Given [tex]\( f(x) = \frac{x-5}{4} \)[/tex] and [tex]\( g(x) = 4x + 5 \)[/tex], find [tex]\( (g \circ f)(x) \)[/tex].

Select a single answer:

A. [tex]\( x - \frac{5}{4} \)[/tex]

B. [tex]\( 4x + 15 \)[/tex]

C. [tex]\( x + 10 \)[/tex]

D. [tex]\( x \)[/tex]



Answer :

To find [tex]\((g \circ f)(x)\)[/tex], we need to substitute [tex]\(f(x)\)[/tex] into [tex]\(g(x)\)[/tex] and then simplify the resulting expression. Let’s go through the steps in detail:

1. Define [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex]:

[tex]\[ f(x) = \frac{x-5}{4} \][/tex]

[tex]\[ g(x) = 4x + 5 \][/tex]

2. Substitute [tex]\(f(x)\)[/tex] into [tex]\(g(x)\)[/tex]:

We need to find [tex]\(g(f(x))\)[/tex], which means we substitute [tex]\(f(x)\)[/tex] into [tex]\(g(x)\)[/tex]:

[tex]\[ g(f(x)) = g\left(\frac{x-5}{4}\right) \][/tex]

3. Evaluate [tex]\(g(f(x))\)[/tex]:

Substitute [tex]\(\frac{x-5}{4}\)[/tex] into [tex]\(g(x)\)[/tex]:

[tex]\[ g\left(\frac{x-5}{4}\right) = 4 \left(\frac{x-5}{4}\right) + 5 \][/tex]

4. Simplify the expression:

[tex]\[ 4 \left(\frac{x-5}{4}\right) + 5 = x - 5 + 5 \][/tex]

[tex]\[ x - 5 + 5 = x \][/tex]

5. Result:

Therefore, [tex]\((g \circ f)(x) = x\)[/tex].

Thus, the correct answer is:

[tex]\( \boxed{x} \)[/tex]