Which expression is equivalent to [tex] \frac{4 f^2}{3} \div \frac{1}{4 f} [/tex]?

A. [tex] \frac{16 t^3}{3} [/tex]

B. [tex] \frac{f}{3} [/tex]

C. [tex] \frac{3}{16 f^3} [/tex]

D. [tex] \frac{3}{f} [/tex]



Answer :

To find the expression equivalent to [tex]\(\frac{4 f^2}{3} \div \frac{1}{4 f}\)[/tex], we'll simplify the given division by following these steps:

1. Rewrite the division as multiplication by the reciprocal:

When dividing by a fraction, we multiply by the reciprocal of that fraction. So we have:
[tex]\[ \frac{4 f^2}{3} \div \frac{1}{4 f} = \frac{4 f^2}{3} \times \frac{4 f}{1} \][/tex]

2. Simplify the multiplication:

Now, we can directly multiply the numerators together and the denominators together:
[tex]\[ \frac{4 f^2}{3} \times \frac{4 f}{1} = \frac{4 f^2 \cdot 4 f}{3 \cdot 1} \][/tex]

3. Multiply the numerators:
[tex]\[ 4 f^2 \cdot 4 f = 16 f^3 \][/tex]

4. Multiply the denominators:
[tex]\[ 3 \cdot 1 = 3 \][/tex]

Therefore, our simplified expression is:
[tex]\[ \frac{16 f^3}{3} \][/tex]

Thus, the expression equivalent to [tex]\(\frac{4 f^2}{3} \div \frac{1}{4 f}\)[/tex] is:
[tex]\[ \boxed{\frac{16 f^3}{3}} \][/tex]