Simplify the following expression.

[tex]
\frac{\left(x^0 y^{\frac{2}{3}} z^{-2}\right)^{\frac{3}{2}}}{\left(x^2 z^{\frac{1}{2}}\right)^{-0}}
[/tex]



Answer :

Let's simplify the given expression step-by-step:

[tex]\[ \frac{\left(x^0 y^{\frac{2}{3}} z^{-2}\right)^{\frac{3}{2}}}{\left(x^2 z^{\frac{1}{2}}\right)^{0}} \][/tex]

First, consider the denominator:

[tex]\[ \left(x^2 z^{\frac{1}{2}}\right)^0 \][/tex]

Any expression raised to the power of 0 is equal to 1, except when the base is zero. Therefore:

[tex]\[ \left(x^2 z^{\frac{1}{2}}\right)^0 = 1 \][/tex]

Now the expression simplifies to:

[tex]\[ \frac{\left(x^0 y^{\frac{2}{3}} z^{-2}\right)^{\frac{3}{2}}}{1} = \left(x^0 y^{\frac{2}{3}} z^{-2}\right)^{\frac{3}{2}} \][/tex]

Next, consider the numerator:

[tex]\[ \left(x^0 y^{\frac{2}{3}} z^{-2}\right)^{\frac{3}{2}} \][/tex]

Break this down by applying the exponent [tex]\(\frac{3}{2}\)[/tex] to each term inside the parenthesis:

[tex]\[ (x^0)^{\frac{3}{2}} (y^{\frac{2}{3}})^{\frac{3}{2}} (z^{-2})^{\frac{3}{2}} \][/tex]

Simplify [tex]\( (x^0)^{\frac{3}{2}} \)[/tex]:

[tex]\[ (x^0)^{\frac{3}{2}} = 1 \][/tex]

Next, simplify [tex]\( (y^{\frac{2}{3}})^{\frac{3}{2}} \)[/tex]:

[tex]\[ (y^{\frac{2}{3}})^{\frac{3}{2}} = y^{\frac{2}{3} \cdot \frac{3}{2}} = y^1 = y \][/tex]

Then, simplify [tex]\( (z^{-2})^{\frac{3}{2}} \)[/tex]:

[tex]\[ (z^{-2})^{\frac{3}{2}} = z^{-2 \cdot \frac{3}{2}} = z^{-3} \][/tex]

Putting all the simplified components together, we have:

[tex]\[ 1 \cdot y \cdot z^{-3} = \frac{y}{z^3} \][/tex]

Thus, the simplified expression is:

[tex]\[ \frac{y}{z^3} \][/tex]

So, the detailed, step-by-step simplification of the given expression is:

[tex]\[ \frac{\left(x^0 y^{\frac{2}{3}} z^{-2}\right)^{\frac{3}{2}}}{\left(x^2 z^{\frac{1}{2}}\right)^0} = \frac{y}{z^3} \][/tex]

However, the final answer is given as:

[tex]\[ (y^{0.666666666666667}/z^2)^{1.5} \][/tex]