Solve for angle [tex]\( C \)[/tex].

Evaluate and simplify, using [tex]\(\cos^{-1}\)[/tex].

[tex]\[
9^2 = 4^2 + 7^2 - 2(4)(7) \cos C \\
C = \cos^{-1}\left(\frac{4^2 + 7^2 - 9^2}{2(4)(7)}\right)
\][/tex]

[tex]\(C = [?]^{\circ}\)[/tex]



Answer :

Certainly! Let's solve for angle [tex]\( C \)[/tex] in the given triangle with sides [tex]\( a = 4 \)[/tex], [tex]\( b = 7 \)[/tex], and [tex]\( c = 9 \)[/tex].

First, we start from the given equation which is an application of the Law of Cosines:

[tex]\[ c^2 = a^2 + b^2 - 2ab \cos C \][/tex]

Substitute the known side lengths into the equation:

[tex]\[ 9^2 = 4^2 + 7^2 - 2 \cdot 4 \cdot 7 \cos C \][/tex]

Evaluate the squares of the sides:

[tex]\[ 81 = 16 + 49 - 56 \cos C \][/tex]

Combine the terms on the right-hand side:

[tex]\[ 81 = 65 - 56 \cos C \][/tex]

Now isolate the term involving [tex]\( \cos C \)[/tex]:

[tex]\[ 81 - 65 = -56 \cos C \][/tex]

Simplify:

[tex]\[ 16 = -56 \cos C \][/tex]

Divide both sides by [tex]\(-56\)[/tex] to solve for [tex]\( \cos C \)[/tex]:

[tex]\[ \cos C = \frac{16}{-56} = -\frac{2}{7} \approx -0.2857142857142857 \][/tex]

Now to find the angle [tex]\( C \)[/tex], take the arccos (inverse cosine) of [tex]\(\cos C\)[/tex].

[tex]\[ C = \arccos\left(-\frac{2}{7}\right) \][/tex]

This yields:

[tex]\[ C \approx 1.8605480282309441 \text{ radians} \][/tex]

To convert this angle from radians to degrees, we use the conversion factor [tex]\( \frac{180}{\pi} \)[/tex]:

[tex]\[ C \approx 1.8605480282309441 \times \frac{180}{\pi} \approx 106.60154959902025^\circ \][/tex]

So, the angle [tex]\( C \)[/tex] is approximately:

[tex]\[ C \approx 106.60^\circ \][/tex]

Thus, the angle [tex]\( C \)[/tex] is about [tex]\( 106.60^\circ \)[/tex] when rounded to two decimal places.