To evaluate the expression [tex]\( 4(2x - 1) \)[/tex] when [tex]\( x = 3 \)[/tex] using the distributive property, follow these steps:
1. Substitute [tex]\( x \)[/tex] with 3:
Begin by substituting the given value of [tex]\( x \)[/tex] into the expression.
[tex]\[
4(2 \cdot 3 - 1)
\][/tex]
2. Simplify inside the parentheses:
First, perform the multiplication inside the parentheses:
[tex]\[
2 \cdot 3 = 6
\][/tex]
Then, subtract 1 from the result:
[tex]\[
6 - 1 = 5
\][/tex]
So, the expression now becomes:
[tex]\[
4 \cdot 5
\][/tex]
3. Apply the distributive property:
Finally, multiply the number outside the parentheses by the simplified result inside the parentheses:
[tex]\[
4 \cdot 5 = 20
\][/tex]
Thus, the value of [tex]\( 4(2x - 1) \)[/tex] when [tex]\( x = 3 \)[/tex] is [tex]\(\boxed{20}\)[/tex].