If [tex]$y$[/tex] varies directly as [tex]$x$[/tex], and [tex][tex]$y$[/tex][/tex] is 20 when [tex]$x$[/tex] is 4, what is the constant of variation for this relation?

A. [tex]$\frac{1}{5}$[/tex]
B. [tex][tex]$\frac{4}{5}$[/tex][/tex]
C. 5
D. 16



Answer :

To find the constant of variation in the relation where [tex]\( y \)[/tex] varies directly as [tex]\( x \)[/tex], we use the direct variation formula:

[tex]\[ y = kx \][/tex]

Here, [tex]\( y \)[/tex] and [tex]\( x \)[/tex] are given as 20 and 4, respectively. We need to determine the constant [tex]\( k \)[/tex].

1. Start with the equation for direct variation:
[tex]\[ y = kx \][/tex]

2. Substitute the given values [tex]\( y = 20 \)[/tex] and [tex]\( x = 4 \)[/tex]:
[tex]\[ 20 = k \cdot 4 \][/tex]

3. Solve for [tex]\( k \)[/tex] by dividing both sides of the equation by 4:
[tex]\[ k = \frac{20}{4} \][/tex]

4. Simplify the right-hand side to find [tex]\( k \)[/tex]:
[tex]\[ k = 5 \][/tex]

Thus, the constant of variation [tex]\( k \)[/tex] is:

[tex]\[ \boxed{5} \][/tex]