Answer :
To simplify the expression [tex]\( -2(6m - 5) \)[/tex], we will apply the distributive property. This property states that [tex]\( a(b + c) = ab + ac \)[/tex], where [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] can be any numbers or expressions.
Here's the step-by-step process:
1. Distribute [tex]\(-2\)[/tex] to each term within the parentheses:
The expression inside the parentheses is [tex]\( 6m - 5 \)[/tex]. We need to distribute [tex]\(-2\)[/tex] to both [tex]\( 6m \)[/tex] and [tex]\( -5 \)[/tex].
First, distribute [tex]\(-2\)[/tex] to [tex]\( 6m \)[/tex]:
[tex]\[ -2 \cdot 6m = -12m \][/tex]
2. Distribute [tex]\(-2\)[/tex] to [tex]\(-5\)[/tex]:
Next, distribute [tex]\(-2\)[/tex] to [tex]\(-5\)[/tex]:
[tex]\[ -2 \cdot (-5) = 10 \][/tex]
3. Combine the results:
After distributing [tex]\(-2\)[/tex] to both terms inside the parentheses, we combine the results:
[tex]\[ -12m + 10 \][/tex]
Therefore, the simplified expression is:
[tex]\[ -12m + 10 \][/tex]
Here's the step-by-step process:
1. Distribute [tex]\(-2\)[/tex] to each term within the parentheses:
The expression inside the parentheses is [tex]\( 6m - 5 \)[/tex]. We need to distribute [tex]\(-2\)[/tex] to both [tex]\( 6m \)[/tex] and [tex]\( -5 \)[/tex].
First, distribute [tex]\(-2\)[/tex] to [tex]\( 6m \)[/tex]:
[tex]\[ -2 \cdot 6m = -12m \][/tex]
2. Distribute [tex]\(-2\)[/tex] to [tex]\(-5\)[/tex]:
Next, distribute [tex]\(-2\)[/tex] to [tex]\(-5\)[/tex]:
[tex]\[ -2 \cdot (-5) = 10 \][/tex]
3. Combine the results:
After distributing [tex]\(-2\)[/tex] to both terms inside the parentheses, we combine the results:
[tex]\[ -12m + 10 \][/tex]
Therefore, the simplified expression is:
[tex]\[ -12m + 10 \][/tex]