Answer :

Sure, let's simplify the given expression step-by-step!

We are given the following expression to simplify:
[tex]\[ (6d + 1) \cdot (-5) \][/tex]

### Step 1: Apply the Distributive Property

To simplify this, we need to distribute the [tex]\(-5\)[/tex] to each term inside the parenthesis. The distributive property states that [tex]\(a(b + c) = ab + ac\)[/tex]. Here, [tex]\(a\)[/tex] is [tex]\(-5\)[/tex], [tex]\(b\)[/tex] is [tex]\(6d\)[/tex], and [tex]\(c\)[/tex] is [tex]\(1\)[/tex].

Distributing [tex]\(-5\)[/tex]:
[tex]\[ -5 \cdot (6d) + (-5) \cdot 1 \][/tex]

### Step 2: Perform the multiplication

Next, we perform the multiplication for each term separately.

1. Multiply [tex]\(-5\)[/tex] by [tex]\(6d\)[/tex]:
[tex]\[ -5 \times 6d = -30d \][/tex]

2. Multiply [tex]\(-5\)[/tex] by [tex]\(1\)[/tex]:
[tex]\[ -5 \times 1 = -5 \][/tex]

### Step 3: Combine the results

Now, we combine the terms obtained from the multiplication:
[tex]\[ -30d + (-5) \][/tex]

### Step 4: Simplify the expression

When combining the terms, we write them together:
[tex]\[ -30d - 5 \][/tex]

Hence, the simplified form of [tex]\((6d + 1) \cdot (-5)\)[/tex] is:
[tex]\[ -30d - 5 \][/tex]

Answer:

hello

Step-by-step explanation:

(6d+1)(-5)

=-5*6d -5*1

= -30d - 5