The value of [tex]\( x \)[/tex] in this system of equations is 1.

[tex]\[
\begin{array}{l}
3x + y = 9 \\
y = -4x + 10
\end{array}
\][/tex]

1. Substitute the value of [tex]\( y \)[/tex] in the first equation:

[tex]\[
3x + (-4x + 10) = 9
\][/tex]

2. Combine like terms:

[tex]\[
-x + 10 = 9
\][/tex]

3. Apply the subtraction property of equality:

[tex]\[
-x = -1
\][/tex]

[tex]\[
x = 1
\][/tex]

4. Apply the division property of equality:

What is the value of [tex]\( y \)[/tex]?

[tex]\[
y = \square
\][/tex]



Answer :

Let's determine the value of [tex]\( y \)[/tex] given [tex]\( x = 1 \)[/tex].

We are given the system of equations:
[tex]\[ \begin{array}{l} 3x + y = 9 \\ y = -4x + 10 \end{array} \][/tex]

1. We know [tex]\( x = 1 \)[/tex]. Substitute [tex]\( x = 1 \)[/tex] into the second equation to find [tex]\( y \)[/tex]:
[tex]\[ y = -4x + 10 \][/tex]
[tex]\[ y = -4(1) + 10 \][/tex]

2. Simplify the expression:
[tex]\[ y = -4 + 10 \][/tex]
[tex]\[ y = 6 \][/tex]

Thus, the value of [tex]\( y \)[/tex] is:
[tex]\[ y = 6 \][/tex]