Certainly! Let's simplify the expression:
[tex]\[
(-3p + 5)(-6)
\][/tex]
### Step-by-Step Solution:
1. Distribute [tex]\(-6\)[/tex] to each term inside the parentheses:
[tex]\[
(-6) \cdot (-3p + 5)
\][/tex]
2. Apply the distributive property:
[tex]\[
(-6) \cdot (-3p) + (-6) \cdot 5
\][/tex]
3. Simplify each of the products:
- [tex]\((-6) \cdot (-3p)\)[/tex]: Multiplying [tex]\(-6\)[/tex] by [tex]\(-3p\)[/tex] gives [tex]\(18p\)[/tex], because a negative times a negative yields a positive result.
- [tex]\((-6) \cdot 5\)[/tex]: Multiplying [tex]\(-6\)[/tex] by [tex]\(5\)[/tex] gives [tex]\(-30\)[/tex], because a negative times a positive yields a negative result.
4. Combine the simplified terms:
[tex]\[
18p + (-30)
\][/tex]
Thus, the simplified expression is:
[tex]\[
18p + (-30)
\][/tex]
Or equivalently, it can be written as:
[tex]\[
18p - 30
\][/tex]
This is the simplified form of the given expression.