Answer :
To decompose the rational expression [tex]\(\frac{x}{(x-1)(x+4)}\)[/tex] into partial fractions, we assume it can be expressed in the form:
[tex]\[ \frac{x}{(x-1)(x+4)} = \frac{A}{x-1} + \frac{B}{x+4} \][/tex]
To find the values of [tex]\(A\)[/tex] and [tex]\(B\)[/tex], we start by combining these fractions on the right-hand side over a common denominator:
[tex]\[ \frac{A}{x-1} + \frac{B}{x+4} = \frac{A(x+4) + B(x-1)}{(x-1)(x+4)} \][/tex]
Since the denominators are the same, we can equate the numerators:
[tex]\[ x = A(x+4) + B(x-1) \][/tex]
Next, we expand and collect like terms:
[tex]\[ x = (A + B)x + (4A - B) \][/tex]
For the equation to be true for all [tex]\(x\)[/tex], the coefficients of [tex]\(x\)[/tex] and the constant terms on both sides must be equal. This gives us the system of equations:
[tex]\[ A + B = 1 \][/tex]
[tex]\[ 4A - B = 0 \][/tex]
We now solve this system of equations:
1. From [tex]\(4A - B = 0\)[/tex], we get:
[tex]\[ B = 4A \][/tex]
2. Substitute this into [tex]\(A + B = 1\)[/tex]:
[tex]\[ A + 4A = 1 \][/tex]
[tex]\[ 5A = 1 \][/tex]
[tex]\[ A = \frac{1}{5} \][/tex]
3. Substitute [tex]\(A = \frac{1}{5}\)[/tex] back into [tex]\(B = 4A\)[/tex]:
[tex]\[ B = 4 \left(\frac{1}{5}\right) \][/tex]
[tex]\[ B = \frac{4}{5} \][/tex]
Thus, the partial fraction decomposition of the given rational expression is:
[tex]\[ \frac{x}{(x-1)(x+4)} = \frac{\frac{1}{5}}{x-1} + \frac{\frac{4}{5}}{x+4} \][/tex]
Simplifying the fractions:
[tex]\[ \frac{x}{(x-1)(x+4)} = \frac{1}{5} \cdot \frac{1}{x-1} + \frac{4}{5} \cdot \frac{1}{x+4} \][/tex]
Therefore, the final answer is:
[tex]\[ \frac{x}{(x-1)(x+4)} = \frac{1/5}{x-1} + \frac{4/5}{x+4} \][/tex]
[tex]\[ \frac{x}{(x-1)(x+4)} = \frac{A}{x-1} + \frac{B}{x+4} \][/tex]
To find the values of [tex]\(A\)[/tex] and [tex]\(B\)[/tex], we start by combining these fractions on the right-hand side over a common denominator:
[tex]\[ \frac{A}{x-1} + \frac{B}{x+4} = \frac{A(x+4) + B(x-1)}{(x-1)(x+4)} \][/tex]
Since the denominators are the same, we can equate the numerators:
[tex]\[ x = A(x+4) + B(x-1) \][/tex]
Next, we expand and collect like terms:
[tex]\[ x = (A + B)x + (4A - B) \][/tex]
For the equation to be true for all [tex]\(x\)[/tex], the coefficients of [tex]\(x\)[/tex] and the constant terms on both sides must be equal. This gives us the system of equations:
[tex]\[ A + B = 1 \][/tex]
[tex]\[ 4A - B = 0 \][/tex]
We now solve this system of equations:
1. From [tex]\(4A - B = 0\)[/tex], we get:
[tex]\[ B = 4A \][/tex]
2. Substitute this into [tex]\(A + B = 1\)[/tex]:
[tex]\[ A + 4A = 1 \][/tex]
[tex]\[ 5A = 1 \][/tex]
[tex]\[ A = \frac{1}{5} \][/tex]
3. Substitute [tex]\(A = \frac{1}{5}\)[/tex] back into [tex]\(B = 4A\)[/tex]:
[tex]\[ B = 4 \left(\frac{1}{5}\right) \][/tex]
[tex]\[ B = \frac{4}{5} \][/tex]
Thus, the partial fraction decomposition of the given rational expression is:
[tex]\[ \frac{x}{(x-1)(x+4)} = \frac{\frac{1}{5}}{x-1} + \frac{\frac{4}{5}}{x+4} \][/tex]
Simplifying the fractions:
[tex]\[ \frac{x}{(x-1)(x+4)} = \frac{1}{5} \cdot \frac{1}{x-1} + \frac{4}{5} \cdot \frac{1}{x+4} \][/tex]
Therefore, the final answer is:
[tex]\[ \frac{x}{(x-1)(x+4)} = \frac{1/5}{x-1} + \frac{4/5}{x+4} \][/tex]