A container holds 6.4 moles of gas. Hydrogen gas makes up [tex]$25 \%$[/tex] of the total moles in the container. If the total pressure is 1.24 atm, what is the partial pressure of hydrogen?

Use [tex]\frac{P_d}{P_T}=\frac{n_d}{n_T}[/tex].

A. 0.31 atm
B. 0.93 atm
C. 5.2 atm
D. 31 atm



Answer :

Sure, let's solve this step-by-step.

1. Determine the moles of hydrogen gas:

Given:
- Total moles of gas in the container: [tex]\( n_T = 6.4 \)[/tex] moles
- Percentage of hydrogen gas: [tex]\( 25\% \)[/tex]

To find the moles of hydrogen gas ([tex]\( n_H \)[/tex]):
[tex]\[ n_H = \text{total moles} \times \text{percentage of hydrogen} \][/tex]
[tex]\[ n_H = 6.4 \times 0.25 = 1.6 \text{ moles} \][/tex]

2. Determine the partial pressure of hydrogen gas:

Given:
- Total pressure in the container: [tex]\( P_T = 1.24 \)[/tex] atm

Using the relationship between partial pressure and moles:
[tex]\[ \frac{P_H}{P_T} = \frac{n_H}{n_T} \][/tex]
Rearrange to solve for [tex]\( P_H \)[/tex] (the partial pressure of hydrogen):
[tex]\[ P_H = P_T \times \frac{n_H}{n_T} \][/tex]
[tex]\[ P_H = 1.24 \times \frac{1.6}{6.4} \][/tex]
Simplify the fraction:
[tex]\[ \frac{1.6}{6.4} = 0.25 \][/tex]
Therefore:
[tex]\[ P_H = 1.24 \times 0.25 = 0.31 \text{ atm} \][/tex]

So, the partial pressure of hydrogen in the container is [tex]\( 0.31 \)[/tex] atm.