Consider the following reversible reaction:

[tex]\[ 2 H_2O(g) \leftrightarrow 2 H_2(g) + O_2(g) \][/tex]

What is the equilibrium constant expression for the given system?

A. [tex]\[ K_{\text{eq}} = \frac{\left[ H_2 O \right]}{\left[ H_2 \right] \left[ O_2 \right]} \][/tex]

B. [tex]\[ K_{eq} = \frac{\left[ H_2 O \right]^2}{\left[ H_2 \right]^2 \left[ O_2 \right]} \][/tex]

C. [tex]\[ K_{eq} = \frac{\left[ H_2 \right]^2 \left[ O_2 \right]}{\left[ H_2 O \right]} \][/tex]

D. [tex]\[ K_{\text{eq}} = \frac{\left[ H_2 \right]^2 \left[ O_2 \right]}{\left[ H_2 O \right]^2} \][/tex]



Answer :

To determine the equilibrium constant expression for the given reversible reaction:

[tex]\[ 2 H_2O(g) \leftrightarrow 2 H_2(g) + O_2(g) \][/tex]

we need to follow these steps:

1. Write the balanced chemical equation: This is already given as:

[tex]\[ 2 H_2O(g) \leftrightarrow 2 H_2(g) + O_2(g) \][/tex]

2. Identify the reactants and products: In this reaction, the reactant is [tex]\( H_2O(g) \)[/tex] and the products are [tex]\( H_2(g) \)[/tex] and [tex]\( O_2(g) \)[/tex].

3. Write the general form of the equilibrium constant expression ( [tex]\( K_{\text{eq}} \)[/tex] ): For a general reaction of the form

[tex]\[ aA + bB \leftrightarrow cC + dD \][/tex]

the equilibrium constant expression is:

[tex]\[ K_{\text{eq}} = \frac{[C]^c[D]^d}{[A]^a[B]^b} \][/tex]

4. Apply this to the specific reaction:

For the reaction

[tex]\[ 2 H_2O(g) \leftrightarrow 2 H_2(g) + O_2(g) \][/tex]

the equilibrium constant expression would be:

[tex]\[ K_{\text{eq}} = \frac{[H_2]^2[O_2]}{[H_2O]^2} \][/tex]

This is because the coefficients in the balanced equation determine the exponents for the concentrations of the substances.

5. Check the given options to find the correct expression:

- [tex]\( K_{\text{eq}} = \frac{[H_2O]}{[H_2][O_2]} \)[/tex]
- [tex]\( K_{\text{eq}} = \frac{[H_2O]^2}{[H_2]^2[O_2]} \)[/tex]
- [tex]\( K_{\text{eq}} = \frac{[H_2]^2[O_2]}{[H_2O]} \)[/tex]
- [tex]\( K_{\text{eq}} = \frac{[H_2]^2[O_2]}{[H_2O]^2} \)[/tex]

6. Select the correct option: The correct equilibrium constant expression is

[tex]\[ K_{\text{eq}} = \frac{[H_2]^2[O_2]}{[H_2O]^2} \][/tex]

Therefore, the correct option is:

[tex]\( 4 \)[/tex]