Solve for [tex]\( x \)[/tex].

[tex]\[ 3x = 6x - 2 \][/tex]




Format the following question or task so that it is easier to read.
Fix any grammar or spelling errors.
Remove phrases that are not part of the question.
Do not remove or change LaTeX formatting.
Do not change or remove [tex] [/tex] tags.
If the question is nonsense, rewrite it so that it makes sense.
-----
[tex]$
\cos x=\frac{\sqrt{2}}{2}
$[/tex]

Answer from least to greatest.
[tex]$
x=
$[/tex]
[tex]$\square$[/tex]
[tex]$\square$[/tex]
[tex]$\square$[/tex]
[tex]$\square$[/tex]
-----

Response:

Solve for [tex]\( x \)[/tex].

[tex]\[ \cos x = \frac{\sqrt{2}}{2} \][/tex]

Answer from least to greatest.
[tex]\[ x = \][/tex]
[tex]\[ \square \][/tex]
[tex]\[ \square \][/tex]
[tex]\[ \square \][/tex]
[tex]\[ \square \][/tex]



Answer :

To solve [tex]\(\cos x = \frac{\sqrt{2}}{2}\)[/tex] and list the solutions from least to greatest, we first identify all possible angles within one full rotation (0 to [tex]\(2\pi\)[/tex]) for which the cosine of the angle equals [tex]\(\frac{\sqrt{2}}{2}\)[/tex].

### Step-by-Step Solution:

1. Unit Circle Considerations:
- Recall that the cosine of an angle in the unit circle corresponds to the x-coordinate of a point on the circle.
- [tex]\(\cos x = \frac{\sqrt{2}}{2}\)[/tex] occurs at specific angles where the x-coordinate equals [tex]\(\frac{\sqrt{2}}{2}\)[/tex].

2. Primary Angles:
- [tex]\(\frac{\sqrt{2}}{2}\)[/tex] is a common cosine value for the angles:
- [tex]\( x = \frac{\pi}{4} \)[/tex]
- [tex]\( x = \frac{7\pi}{4} \)[/tex]

3. Periodicity Considerations:
- Because cosine has a period of [tex]\(2\pi\)[/tex], we can express these angles periodically:
- [tex]\( x = \frac{\pi}{4} + 2k\pi \)[/tex] where [tex]\(k\)[/tex] is any integer.
- [tex]\( x = \frac{7\pi}{4} + 2k\pi \)[/tex] where [tex]\(k\)[/tex] is any integer.

4. List Specific Solutions:
- To generate a set of solutions ordered from least to greatest, we specifically consider the solutions in the range [tex]\(0 \leq x < 4\pi\)[/tex].

5. Evaluate Specific Solutions:
- Primary angles:
- [tex]\(\frac{\pi}{4}\)[/tex]
- [tex]\(\frac{7\pi}{4}\)[/tex]
- Adding the period of [tex]\(2\pi\)[/tex]:
- [tex]\(2\pi + \frac{\pi}{4} = \frac{9\pi}{4}\)[/tex]
- [tex]\(2\pi + \frac{7\pi}{4} = \frac{15\pi}{4}\)[/tex]

6. Convert into Numerical Values:
- [tex]\(\frac{\pi}{4} = 0.7853981633974483\)[/tex]
- [tex]\(\frac{7\pi}{4} = 5.497787143782138\)[/tex]
- [tex]\(\frac{9\pi}{4} = 7.0685834705770345\)[/tex]
- [tex]\(\frac{15\pi}{4} = 11.780972450961723\)[/tex]

7. Order from Least to Greatest:
- Arrange the solutions in ascending order:
[tex]\[ \left[0.7853981633974483, 5.4977871437821380, 7.0685834705770345, 11.780972450961723\right] \][/tex]

The ordered solutions are:
[tex]\[ x = 0.7853981633974483,\ 5.497787143782138,\ 7.0685834705770345,\ 11.780972450961723 \][/tex]