You wish to test the following claim [tex]\left(H_e\right)[/tex] at a significance level of [tex]\alpha=0.001[/tex].

[tex]\[
\begin{array}{l}
H_0: \mu = 50.8 \\
H_a: \mu \ \textless \ 50.8
\end{array}
\][/tex]

You believe the population is normally distributed and you know the standard deviation is [tex]\sigma = 12.1[/tex]. You obtain a sample mean of [tex]M = 45.2[/tex] for a sample of size [tex]n = 15[/tex].

1. What is the critical value for this test? (Report answer accurate to three decimal places.)
critical value = [tex]\square[/tex]

2. What is the test statistic for this sample? (Report answer accurate to three decimal places.)
test statistic = [tex]\square[/tex]



Answer :

To address this hypothesis testing problem at a significance level [tex]\(\alpha = 0.001\)[/tex], let's follow the steps to find the critical value and the test statistic based on the given information.

### Given Information:
- Population mean ([tex]\(\mu\)[/tex]): 50.8
- Sample mean ([tex]\(\bar{x}\)[/tex]): 45.2
- Standard deviation ([tex]\(\sigma\)[/tex]): 12.1
- Sample size ([tex]\(n\)[/tex]): 15
- Significance level ([tex]\(\alpha\)[/tex]): 0.001

### Step 1: Determine the Critical Value

The null hypothesis ([tex]\(H_0\)[/tex]): [tex]\(\mu = 50.8\)[/tex]

The alternative hypothesis ([tex]\(H_a\)[/tex]): [tex]\(\mu < 50.8\)[/tex] (one-tailed test)

Since this is a left-tailed test at a significance level of [tex]\(\alpha = 0.001\)[/tex], we need to find the critical value corresponding to a cumulative probability of 0.001 under the standard normal distribution.

The critical value is:
[tex]\[ \text{critical value} = -3.09 \][/tex]
(reported to three decimal places).

### Step 2: Calculate the Test Statistic

The formula for the test statistic for a sample mean is:
[tex]\[ z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}} \][/tex]

Plug in the given values:
[tex]\[ \bar{x} = 45.2, \quad \mu = 50.8, \quad \sigma = 12.1, \quad n = 15 \][/tex]

Substitute these values into the formula:
[tex]\[ z = \frac{45.2 - 50.8}{12.1 / \sqrt{15}} \][/tex]

First, compute the standard error ([tex]\(\sigma / \sqrt{n}\)[/tex]):
[tex]\[ \sigma / \sqrt{n} = 12.1 / \sqrt{15} \approx 3.125 \][/tex]

Now, calculate the test statistic:
[tex]\[ z = \frac{45.2 - 50.8}{3.125} \approx \frac{-5.6}{3.125} \approx -1.792 \][/tex]

So, the test statistic is:
[tex]\[ \text{test statistic} = -1.792 \][/tex]
(reported to three decimal places).

### Final Answers:
- Critical value: [tex]\(-3.09\)[/tex]
- Test statistic: [tex]\(-1.792\)[/tex]