Given the function [tex]\( f(x) = \sqrt[3]{x + 8} \)[/tex], find the inverse of [tex]\( f(x) \)[/tex].

A. [tex]\( f^{-1}(x) = x^3 - 8 \)[/tex]

B. [tex]\( f^{-1}(x) = (x + 8)^3 \)[/tex]

C. [tex]\( f^{-1}(x) = x^3 + 8 \)[/tex]

D. [tex]\( f^{-1}(x) = (x - 8)^3 \)[/tex]



Answer :

To find the inverse function of [tex]\( f(x) = \sqrt[3]{x + 8} \)[/tex], let's follow the detailed steps:

1. Express [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex]:
Start by letting [tex]\( y = f(x) \)[/tex]:
[tex]\[ y = \sqrt[3]{x + 8} \][/tex]

2. Swap [tex]\( y \)[/tex] and [tex]\( x \)[/tex]:
To find the inverse function [tex]\( f^{-1}(x) \)[/tex], we switch the roles of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ x = \sqrt[3]{y + 8} \][/tex]

3. Solve for [tex]\( y \)[/tex]:
Now, solve the equation [tex]\( x = \sqrt[3]{y + 8} \)[/tex] for [tex]\( y \)[/tex]:
- Cube both sides to eliminate the cube root:
[tex]\[ x^3 = y + 8 \][/tex]

- Isolate [tex]\( y \)[/tex]:
[tex]\[ y = x^3 - 8 \][/tex]

4. Write the inverse function:
The inverse function [tex]\( f^{-1}(x) \)[/tex] is the expression we found for [tex]\( y \)[/tex]:
[tex]\[ f^{-1}(x) = x^3 - 8 \][/tex]

Therefore, the correct answer is:
[tex]\[ \boxed{A. \, f^{-1}(x) = x^3 - 8} \][/tex]