[tex]\[
\begin{array}{l}
f(x) = 4x^2 + 7x - 3 \\
g(x) = 6x^3 - 7x^2 - 5
\end{array}
\][/tex]

Find [tex]\((f+g)(x)\)[/tex]:

A. [tex]\((f+g)(x) = 10x^3 - 8\)[/tex]

B. [tex]\((f+g)(x) = 6x^3 + 4x^2 - 8\)[/tex]

C. [tex]\((f+g)(x) = -6x^3 + 11x^2 + 7x + 2\)[/tex]

D. [tex]\((f+g)(x) = 6x^3 - 3x^2 + 7x - 8\)[/tex]



Answer :

Let's find the resulting function, [tex]\( (f+g)(x) \)[/tex], by adding the given functions [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] step-by-step.

Given:
[tex]\[ f(x) = 4x^2 + 7x - 3 \][/tex]
[tex]\[ g(x) = 6x^3 - 7x^2 - 5 \][/tex]

To find [tex]\( (f+g)(x) \)[/tex], we add [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex]:
[tex]\[ (f+g)(x) = f(x) + g(x) \][/tex]
[tex]\[ (f+g)(x) = (4x^2 + 7x - 3) + (6x^3 - 7x^2 - 5) \][/tex]

Now, let's combine like terms:

1. [tex]\( x^3 \)[/tex] term:
Only [tex]\( g(x) \)[/tex] has a [tex]\( x^3 \)[/tex] term:
[tex]\[ 6x^3 \][/tex]

2. [tex]\( x^2 \)[/tex] term:
Combine the [tex]\( x^2 \)[/tex] terms from [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex]:
[tex]\[ 4x^2 - 7x^2 = -3x^2 \][/tex]

3. [tex]\( x \)[/tex] term:
Only [tex]\( f(x) \)[/tex] has an [tex]\( x \)[/tex] term:
[tex]\[ 7x \][/tex]

4. Constant term:
Combine the constants from [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex]:
[tex]\[ -3 - 5 = -8 \][/tex]

Now, combine all these terms together:
[tex]\[ (f+g)(x) = 6x^3 - 3x^2 + 7x - 8 \][/tex]

Thus, the resulting function is:
[tex]\[ (f+g)(x) = 6x^3 - 3x^2 + 7x - 8 \][/tex]

From the given options, this matches Option D.

Therefore, the correct answer is:
[tex]\[ \boxed{\text{D. } (f+g)(x)=6 x^3-3 x^2+7 x-8} \][/tex]