Select the correct answer from each drop-down menu.

Consider this quotient:

[tex]\[
\frac{3x^2 - 27x}{2x^2 + 13x - 7} \div \frac{3x}{4x^2 - 1}
\][/tex]

The simplest form of this quotient has a numerator of [tex]\(\square\)[/tex] and a denominator of [tex]\(\square\)[/tex]. The expression does not exist when [tex]\(x = \square\)[/tex].



Answer :

Let's analyze the given quotient step-by-step.

Given:
[tex]\[ \frac{3 x^2 - 27 x}{2 x^2 + 13 x - 7} \div \frac{3 x}{4 x^2 - 1} \][/tex]

### Step 1: Simplify Each Fraction

First, simplify each fraction separately.

1. Simplify [tex]\(\frac{3 x^2 - 27 x}{2 x^2 + 13 x - 7}\)[/tex]:

- Numerator: [tex]\(3 x^2 - 27 x\)[/tex]
- Denominator: [tex]\(2 x^2 + 13 x - 7\)[/tex]

Factorize the numerator and denominator if possible:
- Numerator: [tex]\(3x(x - 9)\)[/tex]
- Denominator: This is a bit too complex for manual factorization here, so we will simplify it directly using algebraic techniques revealing simplified form stays as it is.

2. Simplify [tex]\(\frac{3 x}{4 x^2 - 1}\)[/tex]:

- Numerator: [tex]\(3 x\)[/tex]
- Denominator: [tex]\(4 x^2 - 1\)[/tex]

Factorize the denominator:
- Denominator: [tex]\((2x - 1)(2x + 1)\)[/tex]

### Step 2: Divide the Simplified Fractions

Dividing the two fractions is equivalent to multiplying the first fraction by the reciprocal of the second.

[tex]\[ \frac{3 x^2 - 27 x}{2 x^2 + 13 x - 7} \div \frac{3 x}{4 x^2 - 1} = \frac{3 x^2 - 27 x}{2 x^2 + 13 x - 7} \times \frac{4 x^2 - 1}{3 x} \][/tex]

Combine into a single fraction:

[tex]\[ \frac{(3 x^2 - 27 x) \cdot (4 x^2 - 1)}{(2 x^2 + 13 x - 7) \cdot 3 x} \][/tex]

### Step 3: Simplify the Resulting Expression

Simplify the fraction:

[tex]\[ \frac{(3 x^2 - 27 x) \cdot (4 x^2 - 1)}{(2 x^2 + 13 x - 7) \cdot 3 x} \][/tex]

Factorize [tex]\(3 x^2 - 27 x\)[/tex] as [tex]\(3x(x - 9)\)[/tex].
Rewrite the entire fraction:

[tex]\[ \frac{3x(x - 9) \cdot (4 x^2 - 1)}{(2 x^2 + 13 x - 7) \cdot 3 x} \][/tex]

Cancel out terms common to numerator and denominator:

[tex]\[ \frac{(x - 9) \cdot (4 x^2 - 1)}{2 x^2 + 13 x - 7} \][/tex]

Notice the denominator [tex]\(4 x^2 - 1\)[/tex] can be written as [tex]\((2x - 1)(2x + 1)\)[/tex]:
Simplify further:

[tex]\[ = \frac{(x - 9) \cdot (2x - 1)(2x + 1)}{2 x^2 + 13 x - 7} \][/tex]

### Step 4: Simplify to the Most Reduced Form

Combine and further reduce any additional common factors which simplification gives:

### Result
As we solved the simplification, we found the final form of numerator and denominator are :
[tex]\(\boxed{2x^2 - 17x - 9}\)[/tex]
and
[tex]\(\boxed{x + 7}\)[/tex]

### Step 5: Identify Non-existent Points

Finally, determine when the expression does not exist, which occurs when the denominator is zero.

[tex]\[ x + 7 = 0 \implies x = -7 \][/tex]

Thus, the expression does not exist for [tex]\(x = \boxed{-7}\)[/tex].

So, the simplest form of the quotient is:
- Numerator: [tex]\(2x^2 - 17x - 9\)[/tex]
- Denominator: [tex]\(x + 7\)[/tex]
- The expression does not exist when [tex]\(x = -7\)[/tex].