Answer :
To solve the system of equations:
[tex]\[ \begin{aligned} 1) \quad x - 3y - z &= -3, \\ 2) \quad -x &= 8, \\ 3) \quad 8y - 4z &= 0, \\ 4) \quad 2x - 15y + 7z &= -15, \end{aligned} \][/tex]
we need to find the values of [tex]\(x\)[/tex], [tex]\(y\)[/tex], and [tex]\(z\)[/tex] that satisfy all four equations simultaneously.
### Step-by-Step Solution
1) Solve for [tex]\(x\)[/tex] using Equation (2):
[tex]\[ -x = 8 \implies x = -8 \][/tex]
2) Substitute [tex]\(x = -8\)[/tex] into Equations (1), (3), and (4):
Substitute [tex]\(x = -8\)[/tex] into Equation (1):
[tex]\[ -8 - 3y - z = -3 \implies -3y - z = -3 + 8 \implies -3y - z = 5 \\ \implies z = -3y - 5 \quad \text{(Equation A)} \][/tex]
As Equation (3) does not contain [tex]\(x\)[/tex], it remains unchanged:
[tex]\[ 8y - 4z = 0 \][/tex]
Substitute [tex]\(x = -8\)[/tex] into Equation (4):
[tex]\[ 2(-8) - 15y + 7z = -15 \implies -16 - 15y + 7z = -15 \\ \implies 7z - 15y = 1 \quad \text{(Equation B)} \][/tex]
3) Solve for [tex]\(y\)[/tex] and [tex]\(z\)[/tex] using Equations (3) and (B):
From Equation (3):
[tex]\[ 8y - 4z = 0 \implies 4z = 8y \implies z = 2y \][/tex]
Substitute [tex]\(z = 2y\)[/tex] into Equation (B):
[tex]\[ 7(2y) - 15y = 1 \implies 14y - 15y = 1 \implies -y = 1 \implies y = -1 \][/tex]
4) Find [tex]\(z\)[/tex] using [tex]\(y = -1\)[/tex]:
Substitute [tex]\(y = -1\)[/tex] back into [tex]\(z = 2y\)[/tex]:
[tex]\[ z = 2(-1) \implies z = -2 \][/tex]
We have now determined that:
[tex]\[ x = -8, \quad y = -1, \quad z = -2 \][/tex]
### Verification
Let us verify that these values satisfy all original equations:
1. For [tex]\(x - 3y - z = -3\)[/tex]:
[tex]\[ -8 - 3(-1) - (-2) = -8 + 3 + 2 = -3 \][/tex]
2. For [tex]\(-x = 8\)[/tex]:
[tex]\[ -(-8) = 8 \][/tex]
3. For [tex]\(8y - 4z = 0\)[/tex]:
[tex]\[ 8(-1) - 4(-2) = -8 + 8 = 0 \][/tex]
4. For [tex]\(2x - 15y + 7z = -15\)[/tex]:
[tex]\[ 2(-8) - 15(-1) + 7(-2) = -16 + 15 - 14 = -15 \][/tex]
The values [tex]\(x = -8\)[/tex], [tex]\(y = -1\)[/tex], and [tex]\(z = -2\)[/tex] satisfy all the equations. Therefore, the solution to the system is:
[tex]\[ (x, y, z) = (-8, -1, -2) \][/tex]
[tex]\[ \begin{aligned} 1) \quad x - 3y - z &= -3, \\ 2) \quad -x &= 8, \\ 3) \quad 8y - 4z &= 0, \\ 4) \quad 2x - 15y + 7z &= -15, \end{aligned} \][/tex]
we need to find the values of [tex]\(x\)[/tex], [tex]\(y\)[/tex], and [tex]\(z\)[/tex] that satisfy all four equations simultaneously.
### Step-by-Step Solution
1) Solve for [tex]\(x\)[/tex] using Equation (2):
[tex]\[ -x = 8 \implies x = -8 \][/tex]
2) Substitute [tex]\(x = -8\)[/tex] into Equations (1), (3), and (4):
Substitute [tex]\(x = -8\)[/tex] into Equation (1):
[tex]\[ -8 - 3y - z = -3 \implies -3y - z = -3 + 8 \implies -3y - z = 5 \\ \implies z = -3y - 5 \quad \text{(Equation A)} \][/tex]
As Equation (3) does not contain [tex]\(x\)[/tex], it remains unchanged:
[tex]\[ 8y - 4z = 0 \][/tex]
Substitute [tex]\(x = -8\)[/tex] into Equation (4):
[tex]\[ 2(-8) - 15y + 7z = -15 \implies -16 - 15y + 7z = -15 \\ \implies 7z - 15y = 1 \quad \text{(Equation B)} \][/tex]
3) Solve for [tex]\(y\)[/tex] and [tex]\(z\)[/tex] using Equations (3) and (B):
From Equation (3):
[tex]\[ 8y - 4z = 0 \implies 4z = 8y \implies z = 2y \][/tex]
Substitute [tex]\(z = 2y\)[/tex] into Equation (B):
[tex]\[ 7(2y) - 15y = 1 \implies 14y - 15y = 1 \implies -y = 1 \implies y = -1 \][/tex]
4) Find [tex]\(z\)[/tex] using [tex]\(y = -1\)[/tex]:
Substitute [tex]\(y = -1\)[/tex] back into [tex]\(z = 2y\)[/tex]:
[tex]\[ z = 2(-1) \implies z = -2 \][/tex]
We have now determined that:
[tex]\[ x = -8, \quad y = -1, \quad z = -2 \][/tex]
### Verification
Let us verify that these values satisfy all original equations:
1. For [tex]\(x - 3y - z = -3\)[/tex]:
[tex]\[ -8 - 3(-1) - (-2) = -8 + 3 + 2 = -3 \][/tex]
2. For [tex]\(-x = 8\)[/tex]:
[tex]\[ -(-8) = 8 \][/tex]
3. For [tex]\(8y - 4z = 0\)[/tex]:
[tex]\[ 8(-1) - 4(-2) = -8 + 8 = 0 \][/tex]
4. For [tex]\(2x - 15y + 7z = -15\)[/tex]:
[tex]\[ 2(-8) - 15(-1) + 7(-2) = -16 + 15 - 14 = -15 \][/tex]
The values [tex]\(x = -8\)[/tex], [tex]\(y = -1\)[/tex], and [tex]\(z = -2\)[/tex] satisfy all the equations. Therefore, the solution to the system is:
[tex]\[ (x, y, z) = (-8, -1, -2) \][/tex]