Type the correct answer in each box.

Solve the equation and enter the solutions from least to greatest. If there is only one solution, enter "n/a" for the second solution.

[tex]$
\begin{array}{l}
\frac{1}{x} + \frac{1}{x-16} = \frac{x-2}{x-10} \\
x = \square \text{ or } x = \square
\end{array}
$[/tex]



Answer :

To solve the given equation:

[tex]\[ \frac{1}{x} + \frac{1}{2 - 16} = \frac{x - 2}{x - 10} \][/tex]

First, simplify the term [tex]\(\frac{1}{2 - 16}\)[/tex]:

[tex]\[ 2 - 16 = -14 \\ \frac{1}{2 - 16} = \frac{1}{-14} = -\frac{1}{14} \][/tex]

Now, substitute this back into the equation:

[tex]\[ \frac{1}{x} - \frac{1}{14} = \frac{x - 2}{x - 10} \][/tex]

To eliminate the fractions and solve the equation, find a common denominator for the left-hand side:

[tex]\[ \frac{14}{14x} - \frac{x}{14x} = \frac{14 - x}{14x} \][/tex]

So the left-hand side becomes:

[tex]\[ \frac{14 - x}{14x} \][/tex]

Now, our equation looks like this:

[tex]\[ \frac{14 - x}{14x} = \frac{x - 2}{x - 10} \][/tex]

Cross-multiply to solve for [tex]\(x\)[/tex]:

[tex]\[ (14 - x)(x - 10) = 14x(x - 2) \][/tex]

Expand both sides:

[tex]\[ 14x - 140 - x^2 + 10x = 14x^2 - 28x \][/tex]

Simplify and combine like terms:

[tex]\[ 14x - 140 + 10x - x^2 = 14x^2 - 28x \\ 24x - 140 - x^2 = 14x^2 - 28x \][/tex]

Combine all terms on one side of the equation:

[tex]\[ 0 = 14x^2 + x^2 - 28x - 24x + 140 \\ 0 = 15x^2 - 52x + 140 \][/tex]

This is a quadratic equation of the form [tex]\(ax^2 + bx + c = 0\)[/tex], where [tex]\(a = 15\)[/tex], [tex]\(b = -52\)[/tex], and [tex]\(c = 140\)[/tex]. Solve the quadratic equation using the quadratic formula:

[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]

To find the discriminant:

[tex]\[ b^2 - 4ac = (-52)^2 - 4(15)(140) \\ = 2704 - 8400 = -5696 \][/tex]

Since the discriminant is negative, this indicates that there are no real solutions to the equation. Therefore, we can conclude:

[tex]\[ x = \text{na} \;\text{or}\; x = \text{na} \][/tex]

If the problem is constrained to real numbers, then there are no real solutions.

Thus, the solution is:

[tex]\[ x = \text{na} \ \text{or} \ x = \text{na} \][/tex]