Two balls undergo an inelastic collision. The [tex]$y$[/tex]-momentum after the collision is 98 kilogram meters/second, and the [tex]$x$[/tex]-momentum after the collision is 100 kilogram meters/second. What is the magnitude of the resultant momentum after the collision?

A. [tex]$1.0 \times 10^2$[/tex] kilogram meters/second
B. [tex]$1.3 \times 10^2$[/tex] kilogram meters/second
C. [tex]$1.3 \times 10^2$[/tex] kilogram meters/second
D. [tex]$1.4 \times 10^2$[/tex] kilogram meters/second
E. [tex]$1.8 \times 10^2$[/tex] kilogram meters/second



Answer :

Certainly! To find the magnitude of the resultant momentum after the collision, we need to combine the given [tex]\( y \)[/tex]-momentum and [tex]\( x \)[/tex]-momentum using the Pythagorean theorem.

Given:
- [tex]\( y \)[/tex]-momentum = 98 kg·m/s
- [tex]\( x \)[/tex]-momentum = 100 kg·m/s

The resultant momentum [tex]\( p_{\text{resultant}} \)[/tex] can be calculated using the formula for the magnitude of a vector:

[tex]\[ p_{\text{resultant}} = \sqrt{(p_x^2 + p_y^2)} \][/tex]

Let's plug in the values:
[tex]\[ p_{\text{resultant}} = \sqrt{(100^2 + 98^2)} \][/tex]

First, compute the squares:
[tex]\[ 100^2 = 10000 \][/tex]
[tex]\[ 98^2 = 9604 \][/tex]

Next, add these values:
[tex]\[ 10000 + 9604 = 19604 \][/tex]

Finally, take the square root of the sum:
[tex]\[ \sqrt{19604} \approx 140.0142849854971 \][/tex]

Thus, the magnitude of the resultant momentum is approximately [tex]\( 140.014 \)[/tex] kilogram meters/second.

Looking at the given options:
A. [tex]\( 1.0 \times 10^2 \)[/tex] kilogram meters/second
B. [tex]\( 1.3 \times 10^2 \)[/tex] kilogram meters/second
C. [tex]\( 1.3 \times 10^2 \)[/tex].ilogram meters/second
D. [tex]\( 1.4 \times 10^2 \)[/tex] kilogram meters/second
E. [tex]\( 1.8 \times 10^2 \)[/tex] kilogram meters/second

The correct choice is:
D. [tex]\( 1.4 \times 10^2 \)[/tex] kilogram meters/second