Solve the inequality [tex]\(5x \ \textless \ 16 + x\)[/tex].

A. [tex]\(x \ \textless \ \frac{1}{4}\)[/tex]
B. [tex]\(x \ \textgreater \ \frac{1}{4}\)[/tex]
C. [tex]\(x \ \textless \ 4\)[/tex]
D. [tex]\(x \ \textgreater \ 4\)[/tex]



Answer :

To solve the inequality [tex]\( 5x < 16 + x \)[/tex], follow these steps:

1. Isolate the variable on one side of the inequality:
Begin by subtracting [tex]\( x \)[/tex] from both sides of the inequality to simplify:

[tex]\[ 5x - x < 16 \][/tex]

2. Combine like terms:

[tex]\[ 4x < 16 \][/tex]

3. Solve for [tex]\( x \)[/tex]:
Next, divide both sides of the inequality by 4 to isolate [tex]\( x \)[/tex]:

[tex]\[ \frac{4x}{4} < \frac{16}{4} \][/tex]

Simplifying the fractions, we get:

[tex]\[ x < 4 \][/tex]

4. Interpret the solution:
So, the solution to the inequality [tex]\( 5x < 16 + x \)[/tex] is [tex]\( x < 4 \)[/tex].

The correct choice from the given options is:

[tex]\[ \boxed{x < 4} \][/tex]