A simple random sample of size [tex]$n$[/tex] is drawn from a normally distributed population. The mean of the sample is [tex]$\bar{x}$[/tex], and the standard deviation is [tex][tex]$s$[/tex][/tex]. What is the [tex]$99\%$[/tex] confidence interval for the population mean? Use the table below to help you answer the question.

\begin{tabular}{|c|c|c|c|}
\hline Confidence Level & [tex]$90 \%$[/tex] & [tex]$95 \%$[/tex] & [tex]$99 \%$[/tex] \\
\hline [tex]$z$[/tex]-score & 1.645 & 1.96 & 2.58 \\
\hline
\end{tabular}

A. [tex]$\bar{x} \pm \frac{0.90 \cdot s}{\sqrt{n}}$[/tex]
B. [tex]$\bar{x} \pm \frac{0.99 \cdot s}{\sqrt{n}}$[/tex]
C. [tex][tex]$\bar{x} \pm \frac{1.645 \cdot s}{\sqrt{n}}$[/tex][/tex]
D. [tex]$\bar{x} \pm \frac{2.58 \cdot s}{\sqrt{n}}$[/tex]



Answer :

To determine the 99% confidence interval for the population mean, we must follow a systematic method. Here's the step-by-step process:

1. Identify the Known Variables:
- Sample size ([tex]\( n \)[/tex]): 85
- Sample mean ([tex]\( \bar{x} \)[/tex]): 0 (assuming the sample mean is provided as 0)
- Sample standard deviation ([tex]\( s \)[/tex]): 1 (assuming the standard deviation of the sample is 1)
- Z-score for 99% confidence level ([tex]\( z' \)[/tex]): 2.58 (from the given table)

2. Calculate the Margin of Error:
The margin of error is calculated using the formula:
[tex]\[ \text{Margin of Error} = z' \cdot \frac{s}{\sqrt{n}} \][/tex]
Plug in the known values:
[tex]\[ \text{Margin of Error} = 2.58 \cdot \frac{1}{\sqrt{85}} \][/tex]
After performing the calculations, we obtain:
[tex]\[ \text{Margin of Error} \approx 0.27984029058606646 \][/tex]

3. Determine the Confidence Interval:
The confidence interval is found by adding and subtracting the margin of error from the sample mean:
[tex]\[ \text{Confidence Interval} = \left( \bar{x} - \text{Margin of Error}, \bar{x} + \text{Margin of Error} \right) \][/tex]
Substituting the values of [tex]\(\bar{x}\)[/tex] and the margin of error:
[tex]\[ \text{Confidence Interval} = \left( 0 - 0.27984029058606646, 0 + 0.27984029058606646 \right) \][/tex]
Simplifying this gives us:
[tex]\[ \text{Confidence Interval} = \left( -0.27984029058606646, 0.27984029058606646 \right) \][/tex]

4. Conclusion:
The 99% confidence interval for the population mean is:
[tex]\[ (-0.27984029058606646, 0.27984029058606646) \][/tex]

This interval gives us a range in which we are 99% confident that the true population mean lies.