A normal distribution of data has a mean of 90 and a standard deviation of 18. What is the approximate [tex]z[/tex]-score for the value 64?

A. -3.6
B. -1.4
C. 1.4
D. 3.6



Answer :

To find the [tex]$z$[/tex]-score for the value 64 in a normal distribution with a mean of 90 and a standard deviation of 18, we can use the z-score formula:

[tex]\[ Z = \frac{X - \mu}{\sigma} \][/tex]

Where:
- [tex]\( Z \)[/tex] is the z-score,
- [tex]\( X \)[/tex] is the value for which we are finding the z-score,
- [tex]\( \mu \)[/tex] (mu) is the mean of the distribution,
- [tex]\( \sigma \)[/tex] (sigma) is the standard deviation of the distribution.

Given the values:
- Mean ([tex]\( \mu \)[/tex]) = 90,
- Standard Deviation ([tex]\( \sigma \)[/tex]) = 18,
- Value ([tex]\( X \)[/tex]) = 64,

we can plug these values into the formula.

[tex]\[ Z = \frac{64 - 90}{18} \][/tex]

Subtract the mean from the value:

[tex]\[ 64 - 90 = -26 \][/tex]

Now, divide by the standard deviation:

[tex]\[ Z = \frac{-26}{18} \approx -1.4444444444444444 \][/tex]

So, the z-score for the value 64 is approximately:

[tex]\[ Z \approx -1.4 \][/tex]

Therefore, the correct answer is:

[tex]\[ \boxed{-1.4} \][/tex]