Answer :
Sure, let's solve the equation [tex]\(\log_4 (8x) = 3\)[/tex] step by step.
1. Rewrite the logarithmic equation in its exponential form.
Logarithmic form: [tex]\(\log_4 (8x) = 3\)[/tex]
Exponential form: [tex]\(4^3 = 8x\)[/tex]
2. Calculate [tex]\(4^3\)[/tex].
We know that:
[tex]\[ 4^3 = 4 \times 4 \times 4 = 64 \][/tex]
3. Set up the equation with [tex]\(8x\)[/tex].
So, we have:
[tex]\[ 64 = 8x \][/tex]
4. Solve for [tex]\(x\)[/tex].
To isolate [tex]\(x\)[/tex], divide both sides of the equation by 8:
[tex]\[ x = \frac{64}{8} \][/tex]
5. Simplify the fraction.
[tex]\[ \frac{64}{8} = 8 \][/tex]
Therefore, the solution to the equation [tex]\(\log_4 (8x) = 3\)[/tex] is:
[tex]\[ x = 8 \][/tex]
So, the correct answer from the given options is:
[tex]\[ x = 8 \][/tex]
1. Rewrite the logarithmic equation in its exponential form.
Logarithmic form: [tex]\(\log_4 (8x) = 3\)[/tex]
Exponential form: [tex]\(4^3 = 8x\)[/tex]
2. Calculate [tex]\(4^3\)[/tex].
We know that:
[tex]\[ 4^3 = 4 \times 4 \times 4 = 64 \][/tex]
3. Set up the equation with [tex]\(8x\)[/tex].
So, we have:
[tex]\[ 64 = 8x \][/tex]
4. Solve for [tex]\(x\)[/tex].
To isolate [tex]\(x\)[/tex], divide both sides of the equation by 8:
[tex]\[ x = \frac{64}{8} \][/tex]
5. Simplify the fraction.
[tex]\[ \frac{64}{8} = 8 \][/tex]
Therefore, the solution to the equation [tex]\(\log_4 (8x) = 3\)[/tex] is:
[tex]\[ x = 8 \][/tex]
So, the correct answer from the given options is:
[tex]\[ x = 8 \][/tex]