The table represents the equation [tex]\( y = 2 - 4x \)[/tex].

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
-2 & 10 \\
\hline
-1 & \\
\hline
0 & -2 \\
\hline
1 & -6 \\
\hline
\end{tabular}

Use the drop-down menus to complete the statements.
The [tex]$x$[/tex]-values are the [tex]$\square$[/tex]
The [tex]$y$[/tex]-values are the [tex]$\square$[/tex]
The missing value in the table for [tex]$x=-1$[/tex] is [tex]$y=$[/tex] [tex]$\square$[/tex]



Answer :

Let's solve the given problem step by step.

1. Identify the x-values and y-values:
- From the table provided, we have the x-values listed as -2, -1, 0, and 1.
- The corresponding y-values for these x-values are given as 10, [tex]\(\square\)[/tex] (missing), -2, and -6.

To answer the specific statements:

2. The [tex]$x$[/tex]-values are the [tex]$\square$[/tex] :
- The [tex]$x$[/tex]-values listed in the table are [tex]\(\{-2, -1, 0, 1\}\)[/tex].
- So, the statement becomes: The [tex]$x$[/tex]-values are the [tex]\(\boxed{\{-2, -1, 0, 1\}}\)[/tex].

3. The [tex]$y$[/tex]-values are the [tex]$\square$[/tex] :
- The [tex]$y$[/tex]-values corresponding to the x-values -2, -1, 0, and 1 are [tex]\( \{10, \square, -2, -6\}\)[/tex].
- So, the statement becomes: The [tex]$y$[/tex]-values are the [tex]\(\boxed{\{10, \square, -2, -6\}}\)[/tex].

4. Calculate the missing value for [tex]\( x = -1 \)[/tex] using the equation [tex]\( y = 2 - 4x \)[/tex]:
- For [tex]\( x = -1 \)[/tex]:
[tex]\[ y = 2 - 4(-1) \][/tex]
[tex]\[ y = 2 + 4 \][/tex]
[tex]\[ y = 6 \][/tex]
- So, the missing value in the table for [tex]\( x = -1 \)[/tex] is [tex]\( y = \boxed{6} \)[/tex].

To summarize:

- The [tex]$x$[/tex]-values are the [tex]\(\boxed{\{-2, -1, 0, 1\}}\)[/tex].
- The [tex]$y$[/tex]-values are the [tex]\(\boxed{\{10, \square, -2, -6\}}\)[/tex].
- The missing value in the table for [tex]\( x = -1 \)[/tex] is [tex]\( y = \boxed{6} \)[/tex].