Which of the following points is a solution to the following system of equations?

[tex]\[
\begin{array}{l}
x + y = 1 \\
3x - y = 3
\end{array}
\][/tex]

A. [tex]\((3,0)\)[/tex]
B. [tex]\((5,-1)\)[/tex]
C. [tex]\((1,4)\)[/tex]
D. [tex]\((1,0)\)[/tex]



Answer :

We are given the system of equations:

[tex]\[ \begin{cases} x + y = 1 \\ 3x - y = 3 \end{cases} \][/tex]

We need to determine which of the given points is a solution to this system. Let's evaluate each point in the system one by one.

Option A: (3,0)

Substitute [tex]\( x = 3 \)[/tex] and [tex]\( y = 0 \)[/tex]:

1. [tex]\( x + y = 1 \)[/tex]
[tex]\[ 3 + 0 = 3 \quad \text{(which is not equal to 1)} \][/tex]

2. [tex]\( 3x - y = 3 \)[/tex]
[tex]\[ 3(3) - 0 = 9 \quad \text{(which is not equal to 3)} \][/tex]

So, [tex]\((3,0)\)[/tex] is not a solution.

Option B: (5,-1)

Substitute [tex]\( x = 5 \)[/tex] and [tex]\( y = -1 \)[/tex]:

1. [tex]\( x + y = 1 \)[/tex]
[tex]\[ 5 + (-1) = 4 \quad \text{(which is not equal to 1)} \][/tex]

2. [tex]\( 3x - y = 3 \)[/tex]
[tex]\[ 3(5) - (-1) = 16 \quad \text{(which is not equal to 3)} \][/tex]

So, [tex]\((5,-1)\)[/tex] is not a solution.

Option C: (1,4)

Substitute [tex]\( x = 1 \)[/tex] and [tex]\( y = 4 \)[/tex]:

1. [tex]\( x + y = 1 \)[/tex]
[tex]\[ 1 + 4 = 5 \quad \text{(which is not equal to 1)} \][/tex]

2. [tex]\( 3x - y = 3 \)[/tex]
[tex]\[ 3(1) - 4 = -1 \quad \text{(which is not equal to 3)} \][/tex]

So, [tex]\((1,4)\)[/tex] is not a solution.

Option D: (1,0)

Substitute [tex]\( x = 1 \)[/tex] and [tex]\( y = 0 \)[/tex]:

1. [tex]\( x + y = 1 \)[/tex]
[tex]\[ 1 + 0 = 1 \quad \text{(which is equal to 1)} \][/tex]

2. [tex]\( 3x - y = 3 \)[/tex]
[tex]\[ 3(1) - 0 = 3 \quad \text{(which is equal to 3)} \][/tex]

Both equations are satisfied with this substitution, so [tex]\((1,0)\)[/tex] is indeed a solution to the system of equations.

Thus, the correct answer is:

D. (1,0)