What is the domain of the function [tex]$y=\sqrt[3]{x}$[/tex]?

A. [tex]-\infty \ \textless \ x \ \textless \ \infty[/tex]
B. [tex]0 \ \textless \ x \ \textless \ \infty[/tex]
C. [tex]0 \leq x \ \textless \ \infty[/tex]
D. [tex]1 \leq x \ \textless \ \infty[/tex]



Answer :

To determine the domain of the function [tex]\( y = \sqrt[3]{x} \)[/tex], we need to understand which values of [tex]\( x \)[/tex] can be input into the function to produce real number outputs.

1. Understanding Cube Roots:
- The cube root function, denoted as [tex]\(\sqrt[3]{x}\)[/tex] or [tex]\(x^{1/3}\)[/tex], is defined as the number that, when cubed, gives [tex]\( x \)[/tex].
- Unlike the square root function, the cube root function is defined for all real numbers, including negative numbers, zero, and positive numbers.

2. Analyzing Possible Values of [tex]\( x \)[/tex]:
- When [tex]\( x \)[/tex] is positive, [tex]\(\sqrt[3]{x}\)[/tex] is a positive real number. For example, [tex]\(\sqrt[3]{8} = 2\)[/tex].
- When [tex]\( x \)[/tex] is zero, [tex]\(\sqrt[3]{0}\)[/tex] is zero. For example, [tex]\(\sqrt[3]{0} = 0\)[/tex].
- When [tex]\( x \)[/tex] is negative, [tex]\(\sqrt[3]{x}\)[/tex] is a negative real number. For example, [tex]\(\sqrt[3]{-8} = -2\)[/tex].

3. Domain Conclusion:
- Since the cube root function can take any real number as input and produce a real number as output, there are no restrictions on the domain of [tex]\( x \)[/tex].
- Therefore, the domain of the function [tex]\( y = \sqrt[3]{x} \)[/tex] is all real numbers.

Based on this analysis, the correct domain for the function [tex]\( y = \sqrt[3]{x} \)[/tex] is:
[tex]\[ -\infty < x < \infty \][/tex]

So the answer is:
[tex]\[ -\infty < x < \infty \][/tex]