Solve for [tex]\( x \)[/tex]:
[tex]\[ -2(x-2)^2 + 5 = 0 \][/tex]

Round your answer to the nearest hundredth.

A. [tex]\( x = 3.58, 0.42 \)[/tex]

B. [tex]\( x = 4.52, -0.52 \)[/tex]

C. [tex]\( x = -3.58, -0.42 \)[/tex]

D. [tex]\( x = -4.52, 0.52 \)[/tex]



Answer :

To solve the equation [tex]\(-2(x-2)^2 + 5 = 0\)[/tex], let's go through a step-by-step process:

1. Isolate the quadratic term:
To isolate the quadratic term, start by moving the constant term to the other side of the equation.
[tex]\[ -2(x-2)^2 = -5 \][/tex]

2. Divide by the coefficient of the quadratic term:
To simplify the equation, divide both sides by -2.
[tex]\[ (x-2)^2 = \frac{5}{2} \][/tex]
[tex]\[ (x-2)^2 = 2.5 \][/tex]

3. Take the square root of both sides:
Solve for [tex]\(x - 2\)[/tex] by taking the square root of both sides.
[tex]\[ x - 2 = \pm \sqrt{2.5} \][/tex]
Recall that taking the square root introduces both positive and negative solutions.

4. Solve for [tex]\(x\)[/tex]:
To find [tex]\(x\)[/tex], add 2 to both positive and negative roots.
[tex]\[ x = 2 + \sqrt{2.5} \][/tex]
[tex]\[ x = 2 - \sqrt{2.5} \][/tex]

5. Calculate the numerical values:
We'll calculate each value separately.
[tex]\[ \sqrt{2.5} \approx 1.58 \][/tex]
So,
[tex]\[ x_1 = 2 + 1.58 = 3.58 \][/tex]
[tex]\[ x_2 = 2 - 1.58 = 0.42 \][/tex]

Thus, the solutions to the equation [tex]\(-2(x-2)^2 + 5 = 0\)[/tex], rounded to the nearest hundredth, are:
[tex]\[ x = 3.58 \quad \text{and} \quad x = 0.42 \][/tex]

From the given options, the correct answer is:
[tex]\[ \boxed{x = 3.58 \quad \text{and} \quad x = 0.42} \][/tex]