Answer :

Sure, I'd be happy to walk you through the process of multiplying and simplifying the expression [tex]\((x-4)(4x+3)\)[/tex].

1. Distribute each term in the first expression to the second expression:

[tex]\[ (x - 4)(4x + 3) \][/tex]

2. Multiply [tex]\(x\)[/tex] by each term in the second expression:

[tex]\[ x \cdot 4x + x \cdot 3 \][/tex]

This results in:

[tex]\[ 4x^2 + 3x \][/tex]

3. Multiply [tex]\(-4\)[/tex] by each term in the second expression:

[tex]\[ -4 \cdot 4x + -4 \cdot 3 \][/tex]

This results in:

[tex]\[ -16x - 12 \][/tex]

4. Combine all these terms together:

[tex]\[ 4x^2 + 3x - 16x - 12 \][/tex]

5. Combine like terms:

[tex]\[ 4x^2 + (3x - 16x) - 12 \][/tex]

Simplify the expression inside the parentheses:

[tex]\[ 4x^2 - 13x - 12 \][/tex]

So, the simplified result of [tex]\((x-4)(4x+3)\)[/tex] is:

[tex]\[ 4x^2 - 13x - 12 \][/tex]

This is the final simplified expression.

Other Questions