Answer :
Sure, I'd be happy to walk you through the process of multiplying and simplifying the expression [tex]\((x-4)(4x+3)\)[/tex].
1. Distribute each term in the first expression to the second expression:
[tex]\[ (x - 4)(4x + 3) \][/tex]
2. Multiply [tex]\(x\)[/tex] by each term in the second expression:
[tex]\[ x \cdot 4x + x \cdot 3 \][/tex]
This results in:
[tex]\[ 4x^2 + 3x \][/tex]
3. Multiply [tex]\(-4\)[/tex] by each term in the second expression:
[tex]\[ -4 \cdot 4x + -4 \cdot 3 \][/tex]
This results in:
[tex]\[ -16x - 12 \][/tex]
4. Combine all these terms together:
[tex]\[ 4x^2 + 3x - 16x - 12 \][/tex]
5. Combine like terms:
[tex]\[ 4x^2 + (3x - 16x) - 12 \][/tex]
Simplify the expression inside the parentheses:
[tex]\[ 4x^2 - 13x - 12 \][/tex]
So, the simplified result of [tex]\((x-4)(4x+3)\)[/tex] is:
[tex]\[ 4x^2 - 13x - 12 \][/tex]
This is the final simplified expression.
1. Distribute each term in the first expression to the second expression:
[tex]\[ (x - 4)(4x + 3) \][/tex]
2. Multiply [tex]\(x\)[/tex] by each term in the second expression:
[tex]\[ x \cdot 4x + x \cdot 3 \][/tex]
This results in:
[tex]\[ 4x^2 + 3x \][/tex]
3. Multiply [tex]\(-4\)[/tex] by each term in the second expression:
[tex]\[ -4 \cdot 4x + -4 \cdot 3 \][/tex]
This results in:
[tex]\[ -16x - 12 \][/tex]
4. Combine all these terms together:
[tex]\[ 4x^2 + 3x - 16x - 12 \][/tex]
5. Combine like terms:
[tex]\[ 4x^2 + (3x - 16x) - 12 \][/tex]
Simplify the expression inside the parentheses:
[tex]\[ 4x^2 - 13x - 12 \][/tex]
So, the simplified result of [tex]\((x-4)(4x+3)\)[/tex] is:
[tex]\[ 4x^2 - 13x - 12 \][/tex]
This is the final simplified expression.