The equation [tex]$2 x^2-12 x+1=0$[/tex] is being rewritten in vertex form. Fill in the missing step.

\begin{tabular}{|l|l|}
\hline
Given & [tex]$2 x^2-12 x+1=0$[/tex] \\
\hline
Step 1 & [tex]$2\left(x^2-6 x + \ldots \right) + \ldots = 0$[/tex] \\
\hline
Step 2 & [tex][tex]$2\left(x^2-6 x + 9\right) + 1 - 18 = 0$[/tex][/tex] \\
\hline
Step 3 & [tex]2\left(x-3\right)^2 - 17 = 0$ \\
\hline
\end{tabular}

A. [tex]$2(x-3)^2+17=0[tex]$[/tex]

B. [tex]$[/tex]2(x-3)^2-17=0$[/tex]

C. [tex]$2(x+3)^2-17=0$[/tex]

D. [tex]$2(x-6)^2-17=0$[/tex]



Answer :

Let's go through the steps to rewrite the given quadratic equation [tex]\(2x^2 - 12x + 1 = 0\)[/tex] in vertex form.

### Step-by-Step Solution:

#### Step 1: Factor out the coefficient of [tex]\(x^2\)[/tex]
Given equation:
[tex]\[2x^2 - 12x + 1 = 0\][/tex]

Factor out the 2 from the [tex]\(x\)[/tex]-terms:
[tex]\[2(x^2 - 6x) + 1 = 0\][/tex]

#### Step 2: Complete the square inside the parenthesis
To complete the square for the quadratic expression [tex]\(x^2 - 6x\)[/tex]:

1. Take half of the coefficient of [tex]\(x\)[/tex] (which is [tex]\(-6\)[/tex]), square it, and add and subtract this value inside the parenthesis.
2. [tex]\[\left(\frac{-6}{2}\right)^2 = 9\][/tex]

So we add and subtract 9 inside the parenthesis:
[tex]\[2(x^2 - 6x + 9 - 9) + 1 = 0\][/tex]

This simplifies to:
[tex]\[2((x - 3)^2 - 9) + 1 = 0\][/tex]

#### Step 3: Move the constant out and combine
Distribute the 2 and simplify:
[tex]\[2(x - 3)^2 - 18 + 1 = 0\][/tex]

Here, collect all constant terms outside the squared term. Notice that:
[tex]\[2((x - 3)^2 - 9) + 1 - 18 = 0\][/tex]

Now we simplify further:
[tex]\[2(x - 3)^2 - 17 = 0\][/tex]

Thus, the correct form of the quadratic equation in vertex form is:
[tex]\[2(x - 3)^2 - 17 = 0\][/tex]

So, the missing step and the final correct vertex form of the equation is:
[tex]\[2((x - 3)^2 - 9) + 1 - 18 = 0\][/tex]
Given this, the correct vertex form of the equation is:
[tex]\[2(x - 3)^2 - 17 = 0\][/tex]