The table shows the concentration of a reactant in the reaction mixture over a period of time.

[tex]\[
\begin{array}{|l|l|}
\hline \text{Time (s)} & \text{Concentration (M)} \\
\hline 0 & 1.8 \\
\hline 210 & 1.2 \\
\hline 450 & 0.8 \\
\hline 580 & 0.6 \\
\hline 720 & 0.4 \\
\hline
\end{array}
\][/tex]

What is the average rate of the reaction over the entire course of the reaction?

A. [tex]\(1.6 \times 10^{-3}\)[/tex]
B. [tex]\(1.9 \times 10^{-3}\)[/tex]
C. [tex]\(2.0 \times 10^{-3}\)[/tex]
D. [tex]\(2.2 \times 10^{-3}\)[/tex]



Answer :

To find the average rate of the reaction over the entire course of the reaction, we need to use the following formula:

[tex]\[ \text{Average Rate} = \frac{\Delta \text{Concentration}}{\Delta \text{Time}} \][/tex]

Given the data from the table, we can identify the initial and final concentrations as well as the corresponding times:

- Initial time ([tex]\(t_0\)[/tex]): 0 seconds
- Final time ([tex]\(t_f\)[/tex]): 720 seconds
- Initial concentration ([tex]\([A]_0\)[/tex]): 1.8 M
- Final concentration ([tex]\([A]_f\)[/tex]): 0.4 M

Now, we need to calculate the change in concentration ([tex]\(\Delta \text{Concentration}\)[/tex]) and the change in time ([tex]\(\Delta \text{Time}\)[/tex]):

[tex]\[ \Delta \text{Concentration} = [A]_0 - [A]_f = 1.8 \, \text{M} - 0.4 \, \text{M} = 1.4 \, \text{M} \][/tex]

[tex]\[ \Delta \text{Time} = t_f - t_0 = 720 \, \text{s} - 0 \, \text{s} = 720 \, \text{s} \][/tex]

Using these values, we can calculate the average rate of the reaction:

[tex]\[ \text{Average Rate} = \frac{1.4 \, \text{M}}{720 \, \text{s}} = 0.0019444444444444444 \, \text{M/s} \][/tex]

To express this in scientific notation:

[tex]\[ 0.0019444444444444444 \, \text{M/s} = 1.9444444444444444 \times 10^{-3} \, \text{M/s} \][/tex]

Looking at the given options, the closest value to our calculation is:

[tex]\[ 1.9 \times 10^{-3} \, \text{M/s} \][/tex]

Therefore, the average rate of the reaction over the entire course of the reaction is:

[tex]\[ 1.9 \times 10^{-3} \, \text{M/s} \][/tex]

So, the correct answer is [tex]\(1.9 \times 10^{-3}\)[/tex].