Answer :
Sure, let's break down each expression step-by-step and solve or simplify them as needed.
### 1. Expression: [tex]\(8r - 11r^2 - 56\)[/tex]
1. Rewriting the expression:
[tex]\[ -11r^2 + 8r - 56 \][/tex]
2. Solving for [tex]\(r\)[/tex] when the expression is set to zero:
[tex]\[ -11r^2 + 8r - 56 = 0 \][/tex]
3. Using the quadratic formula [tex]\(r = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex], where [tex]\(a = -11\)[/tex], [tex]\(b = 8\)[/tex], and [tex]\(c = -56\)[/tex]:
[tex]\[ r = \frac{-8 \pm \sqrt{8^2 - 4(-11)(-56)}}{2(-11)} \][/tex]
[tex]\[ r = \frac{-8 \pm \sqrt{64 - 2464}}{-22} \][/tex]
[tex]\[ r = \frac{-8 \pm \sqrt{-2400}}{-22} \][/tex]
[tex]\[ r = \frac{-8 \pm 10i\sqrt{6}}{-22} \][/tex]
[tex]\[ r = \frac{4}{11} \pm \frac{10i\sqrt{6}}{11} \][/tex]
Hence, the solutions are:
[tex]\[ r = \frac{4}{11} - \frac{10i\sqrt{6}}{11}, \quad r = \frac{4}{11} + \frac{10i\sqrt{6}}{11} \][/tex]
### 2. Expression: [tex]\(92x - x^2 + 56\)[/tex]
1. Rewriting the expression:
[tex]\[ -x^2 + 92x + 56 \][/tex]
2. Solving for [tex]\(x\)[/tex] when the expression is set to zero:
[tex]\[ -x^2 + 92x + 56 = 0 \][/tex]
3. Using the quadratic formula [tex]\(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex], where [tex]\(a = -1\)[/tex], [tex]\(b = 92\)[/tex], and [tex]\(c = 56\)[/tex]:
[tex]\[ x = \frac{-92 \pm \sqrt{92^2 - 4(-1)(56)}}{2(-1)} \][/tex]
[tex]\[ x = \frac{-92 \pm \sqrt{8464 + 224}}{-2} \][/tex]
[tex]\[ x = \frac{-92 \pm \sqrt{8688}}{-2} \][/tex]
[tex]\[ x = \frac{-92 \pm 2\sqrt{543}}{-2} \][/tex]
[tex]\[ x = 46 \pm 2\sqrt{543} \][/tex]
Hence, the solutions are:
[tex]\[ x = 46 - 2\sqrt{543}, \quad x = 46 + 2\sqrt{543} \][/tex]
### 3. Expression: [tex]\(8(x^2 - 22x + 12x)\)[/tex]
1. Simplifying inside the parentheses:
[tex]\[ x^2 - 22x + 12x = x^2 - 10x \][/tex]
2. Simplifying the whole expression:
[tex]\[ 8(x^2 - 10x) = 8x^2 - 80x \][/tex]
3. Solving for [tex]\(x\)[/tex] when the expression is set to zero:
[tex]\[ 8x^2 - 80x = 0 \][/tex]
4. Factoring out 8x:
[tex]\[ 8x(x - 10) = 0 \][/tex]
5. Setting each factor to zero:
[tex]\[ x = 0 \quad \text{or} \quad x - 10 = 0 \][/tex]
6. Solving for [tex]\(x\)[/tex]:
[tex]\[ x = 10 \][/tex]
Hence, the solutions are:
[tex]\[ x = 0, \quad x = 10 \][/tex]
### 4. Expression: [tex]\(0x^2 - 22n + 128\)[/tex]
1. Simplifying the expression:
[tex]\[ -22n + 128 \][/tex]
2. Solving for [tex]\(n\)[/tex] when the expression is set to zero:
[tex]\[ -22n + 128 = 0 \][/tex]
3. Isolating [tex]\(n\)[/tex]:
[tex]\[ -22n = -128 \][/tex]
[tex]\[ n = \frac{128}{22} \][/tex]
[tex]\[ n = \frac{64}{11} \][/tex]
Hence, the solution is:
[tex]\[ n = \frac{64}{11} \][/tex]
This concludes the step-by-step solutions for each of the given expressions.
### 1. Expression: [tex]\(8r - 11r^2 - 56\)[/tex]
1. Rewriting the expression:
[tex]\[ -11r^2 + 8r - 56 \][/tex]
2. Solving for [tex]\(r\)[/tex] when the expression is set to zero:
[tex]\[ -11r^2 + 8r - 56 = 0 \][/tex]
3. Using the quadratic formula [tex]\(r = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex], where [tex]\(a = -11\)[/tex], [tex]\(b = 8\)[/tex], and [tex]\(c = -56\)[/tex]:
[tex]\[ r = \frac{-8 \pm \sqrt{8^2 - 4(-11)(-56)}}{2(-11)} \][/tex]
[tex]\[ r = \frac{-8 \pm \sqrt{64 - 2464}}{-22} \][/tex]
[tex]\[ r = \frac{-8 \pm \sqrt{-2400}}{-22} \][/tex]
[tex]\[ r = \frac{-8 \pm 10i\sqrt{6}}{-22} \][/tex]
[tex]\[ r = \frac{4}{11} \pm \frac{10i\sqrt{6}}{11} \][/tex]
Hence, the solutions are:
[tex]\[ r = \frac{4}{11} - \frac{10i\sqrt{6}}{11}, \quad r = \frac{4}{11} + \frac{10i\sqrt{6}}{11} \][/tex]
### 2. Expression: [tex]\(92x - x^2 + 56\)[/tex]
1. Rewriting the expression:
[tex]\[ -x^2 + 92x + 56 \][/tex]
2. Solving for [tex]\(x\)[/tex] when the expression is set to zero:
[tex]\[ -x^2 + 92x + 56 = 0 \][/tex]
3. Using the quadratic formula [tex]\(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex], where [tex]\(a = -1\)[/tex], [tex]\(b = 92\)[/tex], and [tex]\(c = 56\)[/tex]:
[tex]\[ x = \frac{-92 \pm \sqrt{92^2 - 4(-1)(56)}}{2(-1)} \][/tex]
[tex]\[ x = \frac{-92 \pm \sqrt{8464 + 224}}{-2} \][/tex]
[tex]\[ x = \frac{-92 \pm \sqrt{8688}}{-2} \][/tex]
[tex]\[ x = \frac{-92 \pm 2\sqrt{543}}{-2} \][/tex]
[tex]\[ x = 46 \pm 2\sqrt{543} \][/tex]
Hence, the solutions are:
[tex]\[ x = 46 - 2\sqrt{543}, \quad x = 46 + 2\sqrt{543} \][/tex]
### 3. Expression: [tex]\(8(x^2 - 22x + 12x)\)[/tex]
1. Simplifying inside the parentheses:
[tex]\[ x^2 - 22x + 12x = x^2 - 10x \][/tex]
2. Simplifying the whole expression:
[tex]\[ 8(x^2 - 10x) = 8x^2 - 80x \][/tex]
3. Solving for [tex]\(x\)[/tex] when the expression is set to zero:
[tex]\[ 8x^2 - 80x = 0 \][/tex]
4. Factoring out 8x:
[tex]\[ 8x(x - 10) = 0 \][/tex]
5. Setting each factor to zero:
[tex]\[ x = 0 \quad \text{or} \quad x - 10 = 0 \][/tex]
6. Solving for [tex]\(x\)[/tex]:
[tex]\[ x = 10 \][/tex]
Hence, the solutions are:
[tex]\[ x = 0, \quad x = 10 \][/tex]
### 4. Expression: [tex]\(0x^2 - 22n + 128\)[/tex]
1. Simplifying the expression:
[tex]\[ -22n + 128 \][/tex]
2. Solving for [tex]\(n\)[/tex] when the expression is set to zero:
[tex]\[ -22n + 128 = 0 \][/tex]
3. Isolating [tex]\(n\)[/tex]:
[tex]\[ -22n = -128 \][/tex]
[tex]\[ n = \frac{128}{22} \][/tex]
[tex]\[ n = \frac{64}{11} \][/tex]
Hence, the solution is:
[tex]\[ n = \frac{64}{11} \][/tex]
This concludes the step-by-step solutions for each of the given expressions.