Format the following question or task so that it is easier to read.
Fix any grammar or spelling errors.
Remove phrases that are not part of the question.
Do not remove or change LaTeX formatting.
Do not change or remove [tex] [/tex] tags.
If the question is nonsense, rewrite it so that it makes sense.
-----

Simplify each of the following expressions:

1. [tex]8r - 11r^2 - 56[/tex]

2. [tex]92x - x^2 + 56[/tex]

3. [tex]8(x^2 - 22x + 12x)[/tex]

4. [tex]0x^2 - 22n + 128[/tex]



Answer :

Sure, let's break down each expression step-by-step and solve or simplify them as needed.

### 1. Expression: [tex]\(8r - 11r^2 - 56\)[/tex]

1. Rewriting the expression:
[tex]\[ -11r^2 + 8r - 56 \][/tex]

2. Solving for [tex]\(r\)[/tex] when the expression is set to zero:
[tex]\[ -11r^2 + 8r - 56 = 0 \][/tex]

3. Using the quadratic formula [tex]\(r = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex], where [tex]\(a = -11\)[/tex], [tex]\(b = 8\)[/tex], and [tex]\(c = -56\)[/tex]:
[tex]\[ r = \frac{-8 \pm \sqrt{8^2 - 4(-11)(-56)}}{2(-11)} \][/tex]
[tex]\[ r = \frac{-8 \pm \sqrt{64 - 2464}}{-22} \][/tex]
[tex]\[ r = \frac{-8 \pm \sqrt{-2400}}{-22} \][/tex]
[tex]\[ r = \frac{-8 \pm 10i\sqrt{6}}{-22} \][/tex]
[tex]\[ r = \frac{4}{11} \pm \frac{10i\sqrt{6}}{11} \][/tex]

Hence, the solutions are:
[tex]\[ r = \frac{4}{11} - \frac{10i\sqrt{6}}{11}, \quad r = \frac{4}{11} + \frac{10i\sqrt{6}}{11} \][/tex]

### 2. Expression: [tex]\(92x - x^2 + 56\)[/tex]

1. Rewriting the expression:
[tex]\[ -x^2 + 92x + 56 \][/tex]

2. Solving for [tex]\(x\)[/tex] when the expression is set to zero:
[tex]\[ -x^2 + 92x + 56 = 0 \][/tex]

3. Using the quadratic formula [tex]\(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex], where [tex]\(a = -1\)[/tex], [tex]\(b = 92\)[/tex], and [tex]\(c = 56\)[/tex]:
[tex]\[ x = \frac{-92 \pm \sqrt{92^2 - 4(-1)(56)}}{2(-1)} \][/tex]
[tex]\[ x = \frac{-92 \pm \sqrt{8464 + 224}}{-2} \][/tex]
[tex]\[ x = \frac{-92 \pm \sqrt{8688}}{-2} \][/tex]
[tex]\[ x = \frac{-92 \pm 2\sqrt{543}}{-2} \][/tex]
[tex]\[ x = 46 \pm 2\sqrt{543} \][/tex]

Hence, the solutions are:
[tex]\[ x = 46 - 2\sqrt{543}, \quad x = 46 + 2\sqrt{543} \][/tex]

### 3. Expression: [tex]\(8(x^2 - 22x + 12x)\)[/tex]

1. Simplifying inside the parentheses:
[tex]\[ x^2 - 22x + 12x = x^2 - 10x \][/tex]

2. Simplifying the whole expression:
[tex]\[ 8(x^2 - 10x) = 8x^2 - 80x \][/tex]

3. Solving for [tex]\(x\)[/tex] when the expression is set to zero:
[tex]\[ 8x^2 - 80x = 0 \][/tex]

4. Factoring out 8x:
[tex]\[ 8x(x - 10) = 0 \][/tex]

5. Setting each factor to zero:
[tex]\[ x = 0 \quad \text{or} \quad x - 10 = 0 \][/tex]

6. Solving for [tex]\(x\)[/tex]:
[tex]\[ x = 10 \][/tex]

Hence, the solutions are:
[tex]\[ x = 0, \quad x = 10 \][/tex]

### 4. Expression: [tex]\(0x^2 - 22n + 128\)[/tex]

1. Simplifying the expression:
[tex]\[ -22n + 128 \][/tex]

2. Solving for [tex]\(n\)[/tex] when the expression is set to zero:
[tex]\[ -22n + 128 = 0 \][/tex]

3. Isolating [tex]\(n\)[/tex]:
[tex]\[ -22n = -128 \][/tex]
[tex]\[ n = \frac{128}{22} \][/tex]
[tex]\[ n = \frac{64}{11} \][/tex]

Hence, the solution is:
[tex]\[ n = \frac{64}{11} \][/tex]

This concludes the step-by-step solutions for each of the given expressions.