Determining Color of Light

\begin{tabular}{|c|c|}
\hline Color & \begin{tabular}{c}
Wavelength \\
[tex]$( nm )$[/tex]
\end{tabular} \\
\hline Red & 650 \\
\hline Yellow & 570 \\
\hline Green & 510 \\
\hline Violet & 400 \\
\hline
\end{tabular}

What is most likely the color of the light whose second-order bright band forms an angle of [tex]$13.5^{\circ}$[/tex] if the diffraction grating has 175 lines per mm?

A. Green
B. Red
C. Violet
D. Yellow



Answer :

To determine the color of the light whose second-order bright band forms an angle of [tex]\(13.5^\circ\)[/tex] in a diffraction grating with 175 lines per mm, you can follow these steps:

1. Calculate the distance between lines on the grating:
[tex]\[ d_{\text{mm}} = \frac{1}{175} \text{ mm} \][/tex]
This yields:
[tex]\[ d_{\text{mm}} = 0.005714285714285714 \text{ mm} \][/tex]

2. Convert the distance from millimeters to meters:
[tex]\[ d_{\text{m}} = d_{\text{mm}} \times 10^{-3} \][/tex]
This yields:
[tex]\[ d_{\text{m}} = 0.005714285714285714 \times 10^{-3} \text{ m} \][/tex]
[tex]\[ d_{\text{m}} = 5.7142857142857145 \times 10^{-6} \text{ m} \][/tex]

3. Convert the angle from degrees to radians:
[tex]\[ \theta_{\text{rad}} = \theta_{\text{deg}} \times \frac{\pi}{180} \][/tex]
For [tex]\(\theta_{\text{deg}} = 13.5^\circ\)[/tex]:
[tex]\[ \theta_{\text{rad}} = 13.5 \times \frac{\pi}{180} \][/tex]
[tex]\[ \theta_{\text{rad}} = 0.23561944901923448 \text{ radians} \][/tex]

4. Use the diffraction grating formula to calculate the wavelength:
The general formula for diffraction grating is:
[tex]\[ d \sin(\theta) = n \lambda \][/tex]
For the second-order ([tex]\(n = 2\)[/tex]):
[tex]\[ \lambda = \frac{d \sin(\theta)}{n} \][/tex]
Substituting the given values:
[tex]\[ \lambda = \frac{5.7142857142857145 \times 10^{-6} \times \sin(0.23561944901923448)}{2} \][/tex]
[tex]\[ \lambda = 6.669867538740154 \times 10^{-7} \text{ m} \][/tex]

5. Convert the wavelength from meters to nanometers:
[tex]\[ \lambda_{\text{nm}} = \lambda \times 10^9 \][/tex]
[tex]\[ \lambda_{\text{nm}} = 6.669867538740154 \times 10^{-7} \times 10^9 \][/tex]
[tex]\[ \lambda_{\text{nm}} = 666.9867538740154 \text{ nm} \][/tex]

6. Determine the color based on the wavelength:
Using the given wavelength-color relationship:

- Red: 650 nm
- Yellow: 570 nm
- Green: 510 nm
- Violet: 400 nm

The calculated wavelength of 666.9867538740154 nm falls closest to the "Red" range.

Therefore, the most likely color of the light is red.