Solve for the ordered pairs that satisfy the equation:

[tex]\[ 8x + 4y = 24 \][/tex]

\begin{tabular}{|l|l|l|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] & Ordered Pair \\
\hline
0 & & \\
\hline
& 0 & \\
\hline
\end{tabular}



Answer :

To find solutions for the equation [tex]\(8x + 4y = 24\)[/tex], we'll determine the intercepts where the line intersects the x-axis and y-axis.

### Step-by-Step Solution:

1. Finding the y-intercept:
- The y-intercept occurs when [tex]\(x = 0\)[/tex].
- Substitute [tex]\(x = 0\)[/tex] into the equation [tex]\(8x + 4y = 24\)[/tex]:
[tex]\[ 8(0) + 4y = 24 \][/tex]
[tex]\[ 4y = 24 \][/tex]
[tex]\[ y = 6 \][/tex]
- Therefore, the y-intercept is [tex]\(y = 6\)[/tex]. Thus, the ordered pair when [tex]\(x = 0\)[/tex] is [tex]\((0, 6)\)[/tex].

2. Finding the x-intercept:
- The x-intercept occurs when [tex]\(y = 0\)[/tex].
- Substitute [tex]\(y = 0\)[/tex] into the equation [tex]\(8x + 4y = 24\)[/tex]:
[tex]\[ 8x + 4(0) = 24 \][/tex]
[tex]\[ 8x = 24 \][/tex]
[tex]\[ x = 3 \][/tex]
- Therefore, the x-intercept is [tex]\(x = 3\)[/tex]. Thus, the ordered pair when [tex]\(y = 0\)[/tex] is [tex]\((3, 0)\)[/tex].

### Filling Out the Table:
Now that we have both intercepts, we can complete the table:

[tex]\[ \begin{array}{|l|l|l|} \hline x & y & \text{Ordered Pair} \\ \hline 0 & 6 & (0, 6) \\ \hline 3 & 0 & (3, 0) \\ \hline \end{array} \][/tex]

So, the two answers are the ordered pairs [tex]\((0, 6)\)[/tex] and [tex]\((3, 0)\)[/tex].