What is the expanded form of the given series?

[tex]\[
\sum_{n=0}^5 6n
\][/tex]

A. [tex]\(0 + 1 + 2 + 3 + 4 + 5\)[/tex]

B. [tex]\(0 + 6 + 7 + 8 + 9 + 10\)[/tex]

C. [tex]\(60 + 61 + 62 + 63 + 64 + 65\)[/tex]

D. [tex]\(0 + 6 + 12 + 18 + 24 + 30\)[/tex]

E. [tex]\(6 + 12 + 18 + 24 + 30 + 36\)[/tex]



Answer :

Let's analyze and expand the given summation series:

[tex]\[ \sum_{n=0}^5 6n \][/tex]

This notation tells us to sum the values of [tex]\(6n\)[/tex] as [tex]\(n\)[/tex] ranges from 0 to 5. Here are the step-by-step calculations:

1. For [tex]\(n = 0\)[/tex]:
[tex]\[ 6 \times 0 = 0 \][/tex]

2. For [tex]\(n = 1\)[/tex]:
[tex]\[ 6 \times 1 = 6 \][/tex]

3. For [tex]\(n = 2\)[/tex]:
[tex]\[ 6 \times 2 = 12 \][/tex]

4. For [tex]\(n = 3\)[/tex]:
[tex]\[ 6 \times 3 = 18 \][/tex]

5. For [tex]\(n = 4\)[/tex]:
[tex]\[ 6 \times 4 = 24 \][/tex]

6. For [tex]\(n = 5\)[/tex]:
[tex]\[ 6 \times 5 = 30 \][/tex]

Now, let's list these terms to form the expanded series and verify the sum:

[tex]\[ 0 + 6 + 12 + 18 + 24 + 30 \][/tex]

The expanded form of the given series is:
[tex]\[ [0, 6, 12, 18, 24, 30] \][/tex]

Additionally, summing these terms:

[tex]\[ 0 + 6 + 12 + 18 + 24 + 30 = 90 \][/tex]

So, the expanded form is [tex]\([0, 6, 12, 18, 24, 30]\)[/tex] and the total sum of the series is [tex]\(90\)[/tex].