Answer :
Let's analyze and expand the given summation series:
[tex]\[ \sum_{n=0}^5 6n \][/tex]
This notation tells us to sum the values of [tex]\(6n\)[/tex] as [tex]\(n\)[/tex] ranges from 0 to 5. Here are the step-by-step calculations:
1. For [tex]\(n = 0\)[/tex]:
[tex]\[ 6 \times 0 = 0 \][/tex]
2. For [tex]\(n = 1\)[/tex]:
[tex]\[ 6 \times 1 = 6 \][/tex]
3. For [tex]\(n = 2\)[/tex]:
[tex]\[ 6 \times 2 = 12 \][/tex]
4. For [tex]\(n = 3\)[/tex]:
[tex]\[ 6 \times 3 = 18 \][/tex]
5. For [tex]\(n = 4\)[/tex]:
[tex]\[ 6 \times 4 = 24 \][/tex]
6. For [tex]\(n = 5\)[/tex]:
[tex]\[ 6 \times 5 = 30 \][/tex]
Now, let's list these terms to form the expanded series and verify the sum:
[tex]\[ 0 + 6 + 12 + 18 + 24 + 30 \][/tex]
The expanded form of the given series is:
[tex]\[ [0, 6, 12, 18, 24, 30] \][/tex]
Additionally, summing these terms:
[tex]\[ 0 + 6 + 12 + 18 + 24 + 30 = 90 \][/tex]
So, the expanded form is [tex]\([0, 6, 12, 18, 24, 30]\)[/tex] and the total sum of the series is [tex]\(90\)[/tex].
[tex]\[ \sum_{n=0}^5 6n \][/tex]
This notation tells us to sum the values of [tex]\(6n\)[/tex] as [tex]\(n\)[/tex] ranges from 0 to 5. Here are the step-by-step calculations:
1. For [tex]\(n = 0\)[/tex]:
[tex]\[ 6 \times 0 = 0 \][/tex]
2. For [tex]\(n = 1\)[/tex]:
[tex]\[ 6 \times 1 = 6 \][/tex]
3. For [tex]\(n = 2\)[/tex]:
[tex]\[ 6 \times 2 = 12 \][/tex]
4. For [tex]\(n = 3\)[/tex]:
[tex]\[ 6 \times 3 = 18 \][/tex]
5. For [tex]\(n = 4\)[/tex]:
[tex]\[ 6 \times 4 = 24 \][/tex]
6. For [tex]\(n = 5\)[/tex]:
[tex]\[ 6 \times 5 = 30 \][/tex]
Now, let's list these terms to form the expanded series and verify the sum:
[tex]\[ 0 + 6 + 12 + 18 + 24 + 30 \][/tex]
The expanded form of the given series is:
[tex]\[ [0, 6, 12, 18, 24, 30] \][/tex]
Additionally, summing these terms:
[tex]\[ 0 + 6 + 12 + 18 + 24 + 30 = 90 \][/tex]
So, the expanded form is [tex]\([0, 6, 12, 18, 24, 30]\)[/tex] and the total sum of the series is [tex]\(90\)[/tex].