Answer :
Let's break down the given expression step by step:
1. Evaluate the expression inside the innermost brackets:
[tex]\[ (80 \div 8 + 12) \][/tex]
- First, compute [tex]\(80 \div 8\)[/tex]:
[tex]\[ 80 \div 8 = 10 \][/tex]
- Then, add 12 to the result:
[tex]\[ 10 + 12 = 22 \][/tex]
The expression simplifies to:
[tex]\[ 22 \][/tex]
2. Now, use this result in the next part of the expression inside the brackets:
[tex]\[ \left( \frac{22}{2} - \frac{42}{21} \right) \][/tex]
- First, calculate [tex]\(\frac{22}{2}\)[/tex]:
[tex]\[ \frac{22}{2} = 11 \][/tex]
- Next, calculate [tex]\(\frac{42}{21}\)[/tex]:
[tex]\[ \frac{42}{21} = 2 \][/tex]
- Now, subtract the two results:
[tex]\[ 11 - 2 = 9 \][/tex]
So, the expression simplifies to:
[tex]\[ 9 \][/tex]
3. Proceed with the third brackets:
[tex]\[ 9 \times 10 + 9 \][/tex]
- First, multiply 9 by 10:
[tex]\[ 9 \times 10 = 90 \][/tex]
- Then, add 9 to the result:
[tex]\[ 90 + 9 = 99 \][/tex]
The expression simplifies to:
[tex]\[ 99 \][/tex]
4. Finally, multiply this result by 5:
[tex]\[ 5 \times 99 \][/tex]
[tex]\[ 5 \times 99 = 495 \][/tex]
Therefore, the value of the expression [tex]\(5\{[(80 \div 8 + 12) \div 2 - 42 \div 21] \times 10 + 9\}\)[/tex] is:
[tex]\[ 495 \][/tex]
1. Evaluate the expression inside the innermost brackets:
[tex]\[ (80 \div 8 + 12) \][/tex]
- First, compute [tex]\(80 \div 8\)[/tex]:
[tex]\[ 80 \div 8 = 10 \][/tex]
- Then, add 12 to the result:
[tex]\[ 10 + 12 = 22 \][/tex]
The expression simplifies to:
[tex]\[ 22 \][/tex]
2. Now, use this result in the next part of the expression inside the brackets:
[tex]\[ \left( \frac{22}{2} - \frac{42}{21} \right) \][/tex]
- First, calculate [tex]\(\frac{22}{2}\)[/tex]:
[tex]\[ \frac{22}{2} = 11 \][/tex]
- Next, calculate [tex]\(\frac{42}{21}\)[/tex]:
[tex]\[ \frac{42}{21} = 2 \][/tex]
- Now, subtract the two results:
[tex]\[ 11 - 2 = 9 \][/tex]
So, the expression simplifies to:
[tex]\[ 9 \][/tex]
3. Proceed with the third brackets:
[tex]\[ 9 \times 10 + 9 \][/tex]
- First, multiply 9 by 10:
[tex]\[ 9 \times 10 = 90 \][/tex]
- Then, add 9 to the result:
[tex]\[ 90 + 9 = 99 \][/tex]
The expression simplifies to:
[tex]\[ 99 \][/tex]
4. Finally, multiply this result by 5:
[tex]\[ 5 \times 99 \][/tex]
[tex]\[ 5 \times 99 = 495 \][/tex]
Therefore, the value of the expression [tex]\(5\{[(80 \div 8 + 12) \div 2 - 42 \div 21] \times 10 + 9\}\)[/tex] is:
[tex]\[ 495 \][/tex]