Use the table of values to evaluate the expressions below.

\begin{tabular}{|r|r|r|}
\hline
[tex]$x$[/tex] & [tex]$f(x)$[/tex] & [tex]$g(x)$[/tex] \\
\hline
0 & 6 & 1 \\
\hline
1 & 2 & 8 \\
\hline
2 & 1 & 9 \\
\hline
3 & 3 & 5 \\
\hline
4 & 4 & 7 \\
\hline
5 & 7 & 4 \\
\hline
6 & 8 & 6 \\
\hline
7 & 0 & 0 \\
\hline
8 & 9 & 3 \\
\hline
9 & 5 & 2 \\
\hline
\end{tabular}

1. [tex]$f(g(8)) = \square$[/tex]

2. [tex]$g(f(0)) = \square$[/tex]

3. [tex]$f(f(9)) = \square$[/tex]

4. [tex]$g(g(7)) = \square$[/tex]

Question Help:
Video



Answer :

To evaluate the given expressions using the provided table, let's break down each step in detail.

### Step-by-step evaluations:

1. Evaluate [tex]\( f(g(8)) \)[/tex]
- First, find [tex]\( g(8) \)[/tex]:
[tex]\[ g(8) = 3 \][/tex]
- Next, use this result to find [tex]\( f(3) \)[/tex]:
[tex]\[ f(3) = 3 \][/tex]
- Therefore,
[tex]\[ f(g(8)) = 3 \][/tex]

2. Evaluate [tex]\( g(f(0)) \)[/tex]
- First, find [tex]\( f(0) \)[/tex]:
[tex]\[ f(0) = 6 \][/tex]
- Next, use this result to find [tex]\( g(6) \)[/tex]:
[tex]\[ g(6) = 6 \][/tex]
- Therefore,
[tex]\[ g(f(0)) = 6 \][/tex]

3. Evaluate [tex]\( f(f(9)) \)[/tex]
- First, find [tex]\( f(9) \)[/tex]:
[tex]\[ f(9) = 5 \][/tex]
- Next, use this result to find [tex]\( f(5) \)[/tex]:
[tex]\[ f(5) = 7 \][/tex]
- Therefore,
[tex]\[ f(f(9)) = 7 \][/tex]

4. Evaluate [tex]\( g(g(7)) \)[/tex]
- First, find [tex]\( g(7) \)[/tex]:
[tex]\[ g(7) = 0 \][/tex]
- Next, use this result to find [tex]\( g(0) \)[/tex]:
[tex]\[ g(0) = 1 \][/tex]
- Therefore,
[tex]\[ g(g(7)) = 1 \][/tex]

### Final Results:
- [tex]\( f(g(8)) = 3 \)[/tex]
- [tex]\( g(f(0)) = 6 \)[/tex]
- [tex]\( f(f(9)) = 7 \)[/tex]
- [tex]\( g(g(7)) = 1 \)[/tex]

These are the solutions to the given expressions.