1. Match the expression to its factored form.

[tex]$\qquad$[/tex] 1. [tex]$56x^3 - 7x^2$[/tex]
[tex]$\qquad$[/tex] 2. [tex]$18x^2 + 27x - 9$[/tex]
[tex]$\qquad$[/tex] 3. [tex]$4x^2 + 32$[/tex]
[tex]$\qquad$[/tex] 4. [tex]$6x^4 - 4x^2 + 14x$[/tex]

a. [tex]$7x^2(8x - 1)$[/tex]
b. [tex]$9(2x^2 + 3x - 1)$[/tex]
c. [tex]$4(x^2 + 8)$[/tex]
d. [tex]$2x(3x^3 - 2x + 7)$[/tex]



Answer :

Let's proceed with matching each expression to its factored form step-by-step:

1. Expression: [tex]\( 56x^3 - 7x^2 \)[/tex]
- Considering the factored forms given, none of the provided options correspond to the factored form of this expression.
- Therefore, there is no match for this expression in the provided factored forms.

2. Expression: [tex]\( 18x^2 + 27x - 9 \)[/tex]
- This expression can be factored as [tex]\( 9(2x^2 + 3x - 1) \)[/tex].
- Thus, it matches factored form [tex]\( 9(2x^2 + 3x - 1) \)[/tex].

3. Expression: [tex]\( 4x^2 + 32 \)[/tex]
- This expression can be factored as [tex]\( 4(x^2 + 8) \)[/tex].
- Thus, it matches factored form [tex]\( 4(x^2 + 8) \)[/tex].

4. Expression: [tex]\( 6x^4 - 4x^2 + 14x \)[/tex]
- Considering the factored forms given, none of the provided options correspond to the factored form of this expression.
- Therefore, there is no match for this expression in the provided factored forms.

To summarize:

- Expression 1: [tex]\( 56x^3 - 7x^2 \)[/tex] has no corresponding factored form provided.
- Expression 2: [tex]\( 18x^2 + 27x - 9 \)[/tex] matches with [tex]\( 9(2x^2 + 3x - 1) \)[/tex].
- Expression 3: [tex]\( 4x^2 + 32 \)[/tex] matches with [tex]\( 4(x^2 + 8) \)[/tex].
- Expression 4: [tex]\( 6x^4 - 4x^2 + 14x \)[/tex] has no corresponding factored form provided.

Therefore, the final matching is:
[tex]\[ \begin{aligned} &1. &\text{No match} \\ &2. &9(2x^2 + 3x - 1) \\ &3. &4(x^2 + 8) \\ &4. &\text{No match} \\ \end{aligned} \][/tex]