Solve the equation:

[tex]\[ 2^{5x} = 13 \][/tex]

Give the exact solution using "log":

[tex]\[ x = \][/tex]

Give the approximate solution to 4 decimal places:

[tex]\[ x \approx \square \][/tex]



Answer :

Let's solve the equation:
[tex]\[2^{5x} = 13\][/tex]

### Step-by-Step Solution:

1. Take the natural logarithm of both sides:

[tex]\[\ln(2^{5x}) = \ln(13)\][/tex]

2. Apply the logarithmic property [tex]\(\ln(a^b) = b \cdot \ln(a)\)[/tex]:

[tex]\[5x \cdot \ln(2) = \ln(13)\][/tex]

3. Solve for [tex]\(x\)[/tex]:

[tex]\[x = \frac{\ln(13)}{5 \cdot \ln(2)}\][/tex]

### Exact Solution:
The exact solution is:
[tex]\[ x = \frac{\ln(13)}{5 \cdot \ln(2)} \][/tex]

### Approximate Solution:
To find the approximate value of [tex]\(x\)[/tex], use the natural logarithms of 13 and 2:

- [tex]\(\ln(13) \approx 2.5649\)[/tex]
- [tex]\(\ln(2) \approx 0.6931\)[/tex]

Now, compute:

[tex]\[ x \approx \frac{2.5649}{5 \cdot 0.6931} \approx 0.7401 \][/tex]

Therefore, the approximate solution to 4 decimal places is:
[tex]\[ x \approx 0.7401 \][/tex]