Consider the following intermediate chemical equations:
[tex]\[
\begin{array}{ll}
C (s) + O_2(g) \rightarrow CO_2(g) & \Delta H_1 = -393.5 \text{ kJ} \\
2 CO(g) + O_2(g) \rightarrow 2 CO_2(g) & \Delta H_2 = -566.0 \text{ kJ} \\
2 H_2O(g) \rightarrow 2 H_2(g) + O_2(g) & \Delta H_3 = 483.6 \text{ kJ}
\end{array}
\][/tex]

The overall chemical equation is:
[tex]\[ C(s) + H_2O(g) \rightarrow CO(g) + H_2(g) \][/tex]

To calculate the final enthalpy of the overall chemical equation, which step must occur?

A. Reverse the first equation, and change the sign of the enthalpy. Then, add.

B. Reverse the second equation, and change the sign of the enthalpy. Then, add.

C. Multiply the first equation by three, and triple the enthalpy. Then, add.

D. Divide the third equation by two, and double the enthalpy. Then, add.



Answer :

Let's solve the problem step-by-step to find the enthalpy for the overall chemical equation [tex]\( C(s) + H_2O(g) \rightarrow CO(g) + H_2(g) \)[/tex].

### Given Equations and their Enthalpies
1. [tex]\( C(s) + O_2(g) \rightarrow CO_2(g) \hspace{20pt} \Delta H_1 = -393.5 \, \text{kJ} \)[/tex]
2. [tex]\( 2 \, CO(g) + O_2(g) \rightarrow 2 \, CO_2(g) \hspace{20pt} \Delta H_2 = -566.0 \, \text{kJ} \)[/tex]
3. [tex]\( 2 \, H_2O(g) \rightarrow 2 \, H_2(g) + O_2(g) \hspace{20pt} \Delta H_3 = 483.6 \, \text{kJ} \)[/tex]

### Step 1: Reverse the First Equation
To match the final equation, we need carbon monoxide as a product, hence we reverse the first reaction.
[tex]\[ CO_2(g) \rightarrow C(s) + O_2(g) \][/tex]
The enthalpy change of this reversed reaction is
[tex]\[ \Delta H'_1 = +393.5 \, \text{kJ} \][/tex]

### Step 2: Reverse the Second Equation
We need carbon monoxide as a product, so we reverse the second reaction.
[tex]\[ 2 \, CO_2(g) \rightarrow 2 \, CO(g) + O_2(g) \][/tex]
The enthalpy change of this reversed reaction is
[tex]\[ \Delta H'_2 = +566.0 \, \text{kJ} \][/tex]

### Step 3: Adjust the Third Equation
We need [tex]\( H_2 \)[/tex] and [tex]\( H_2O \)[/tex] in small amounts; hence, we divide the third reaction by 2.
[tex]\[ H_2O(g) \rightarrow H_2(g) + \frac{1}{2} O_2(g) \][/tex]
The enthalpy for this adjusted equation is half of the original:
[tex]\[ \Delta H'_3 = \frac{483.6 \, \text{kJ}}{2} = 241.8 \, \text{kJ} \][/tex]

### Step 4: Summing Up the Enthalpies
Now, we sum the enthalpies of the adjusted equations to find the enthalpy of the overall reaction:
[tex]\[ \Delta H_{\text{total}} = \Delta H'_1 + \Delta H'_2 + \Delta H'_3 \][/tex]
[tex]\[ \Delta H_{\text{total}} = 393.5 \, \text{kJ} + 566.0 \, \text{kJ} + 241.8 \, \text{kJ} \][/tex]
[tex]\[ \Delta H_{\text{total}} = 1201.3 \, \text{kJ} \][/tex]

Therefore, the final enthalpy change for the overall chemical equation [tex]\( C(s) + H_2O(g) \rightarrow CO(g) + H_2(g) \)[/tex] is [tex]\( \Delta H_{\text{total}} = 1201.3 \, \text{kJ} \)[/tex].