Write [tex]$\sqrt[9]{c^7}$[/tex] as an expression with a rational exponent.

A. [tex]$c^{16}$[/tex]

B. [tex][tex]$c^{63}$[/tex][/tex]

C. [tex]$c^{\frac{9}{7}}$[/tex]

D. [tex]$c^{\frac{7}{9}}$[/tex]



Answer :

To rewrite [tex]\(\sqrt[9]{c^7}\)[/tex] as an expression with a rational exponent, follow these steps:

1. Recall the definition of a rational exponent. The nth root of a number raised to the mth power can be written as:
[tex]\[ \sqrt[n]{a^m} = a^{m/n} \][/tex]

2. In the given expression, [tex]\(\sqrt[9]{c^7}\)[/tex], the base [tex]\(c\)[/tex] is raised to the 7th power and then the 9th root is taken. According to the rule, this can be expressed as:
[tex]\[ \sqrt[9]{c^7} = c^{7/9} \][/tex]

3. So, the expression [tex]\(\sqrt[9]{c^7}\)[/tex] rewritten with a rational exponent is:
[tex]\[ c^{\frac{7}{9}} \][/tex]

Among the given options, the correct choice is:
[tex]\[ c^{\frac{7}{9}} \][/tex]