Which choice is equivalent to the product below?

[tex]\[
\sqrt{14} \cdot \sqrt{10}
\][/tex]

A. [tex]\(4 \sqrt{7}\)[/tex]
B. [tex]\(2 \sqrt{35}\)[/tex]
C. 35
D. [tex]\(4 \sqrt{35}\)[/tex]



Answer :

Let's find the equivalent expression for the product [tex]\(\sqrt{14} \cdot \sqrt{10}\)[/tex].

First, recall the property of square roots that states:

[tex]\[ \sqrt{a} \cdot \sqrt{b} = \sqrt{a \cdot b} \][/tex]

Applying this property, we have:

[tex]\[ \sqrt{14} \cdot \sqrt{10} = \sqrt{14 \cdot 10} \][/tex]

Now, we simplify the expression inside the square root:

[tex]\[ 14 \cdot 10 = 140 \][/tex]

Therefore:

[tex]\[ \sqrt{14} \cdot \sqrt{10} = \sqrt{140} \][/tex]

To see if we can simplify [tex]\(\sqrt{140}\)[/tex] further, we factorize 140:

[tex]\[ 140 = 2 \cdot 70 = 2 \cdot 2 \cdot 35 = 4 \cdot 35 \][/tex]

So, we can write:

[tex]\[ \sqrt{140} = \sqrt{4 \cdot 35} \][/tex]

Using the property of square roots, [tex]\(\sqrt{a \cdot b} = \sqrt{a} \cdot \sqrt{b}\)[/tex], we can separate this:

[tex]\[ \sqrt{140} = \sqrt{4 \cdot 35} = \sqrt{4} \cdot \sqrt{35} \][/tex]

We know that:

[tex]\[ \sqrt{4} = 2 \][/tex]

Thus:

[tex]\[ \sqrt{140} = 2 \cdot \sqrt{35} \][/tex]

Therefore, the equivalent expression for [tex]\(\sqrt{14} \cdot \sqrt{10}\)[/tex] is:

[tex]\[ 2 \cdot \sqrt{35} \][/tex]

Hence, the correct choice is:

B. [tex]\(2 \sqrt{35}\)[/tex]