Which choices are equivalent to the quotient below? Check all that apply.

[tex]\[ \frac{\sqrt{50}}{\sqrt{10}} \][/tex]

A. [tex]\(\frac{15}{3}\)[/tex]

B. 5

C. [tex]\(\frac{\sqrt{25}}{\sqrt{5}}\)[/tex]

D. [tex]\(\sqrt{5}\)[/tex]

E. [tex]\(\sqrt{3}\)[/tex]

F. [tex]\(\frac{\sqrt{15}}{\sqrt{3}}\)[/tex]



Answer :

To determine which choices are equivalent to the quotient [tex]\( \frac{\sqrt{50}}{\sqrt{10}} \)[/tex], we will simplify each expression and compare the results.

Firstly, let's simplify the given quotient:
[tex]\[ \frac{\sqrt{50}}{\sqrt{10}} \][/tex]
Using the property of square roots [tex]\(\sqrt{a}/\sqrt{b} = \sqrt{a/b}\)[/tex], we get:
[tex]\[ \frac{\sqrt{50}}{\sqrt{10}} = \sqrt{\frac{50}{10}} = \sqrt{5} \][/tex]
So, the simplified form of the given quotient is [tex]\(\sqrt{5}\)[/tex].

Let's analyze each choice to see which ones are equivalent to [tex]\(\sqrt{5}\)[/tex]:

Choice A: [tex]\(\frac{15}{3}\)[/tex]
[tex]\[ \frac{15}{3} = 5 \][/tex]
This is clearly not equal to [tex]\(\sqrt{5}\)[/tex].

Choice B: 5
[tex]\[ 5 \][/tex]
This is not equal to [tex]\(\sqrt{5}\)[/tex].

Choice C: [tex]\(\frac{\sqrt{25}}{\sqrt{5}}\)[/tex]
[tex]\[ \frac{\sqrt{25}}{\sqrt{5}} = \frac{5}{\sqrt{5}} = \sqrt{5} \][/tex]
This is equal to [tex]\(\sqrt{5}\)[/tex].

Choice D: [tex]\(\sqrt{5}\)[/tex]
This is exactly [tex]\(\sqrt{5}\)[/tex].

Choice E: [tex]\(\sqrt{3}\)[/tex]
[tex]\[ \sqrt{3} \][/tex]
This is not equal to [tex]\(\sqrt{5}\)[/tex].

Choice F: [tex]\(\frac{\sqrt{15}}{\sqrt{3}}\)[/tex]
[tex]\[ \frac{\sqrt{15}}{\sqrt{3}} = \sqrt{\frac{15}{3}} = \sqrt{5} \][/tex]
This is equal to [tex]\(\sqrt{5}\)[/tex].

After evaluating all the choices, we find that the expressions equivalent to [tex]\(\frac{\sqrt{50}}{\sqrt{10}} = \sqrt{5}\)[/tex] are:

- Choice C: [tex]\(\frac{\sqrt{25}}{\sqrt{5}}\)[/tex]
- Choice D: [tex]\(\sqrt{5}\)[/tex]
- Choice F: [tex]\(\frac{\sqrt{15}}{\sqrt{3}}\)[/tex]

Thus, the choices that are equivalent to the quotient are:
C, D, and F.