To solve the problem, we need to find the value of the quotient:
[tex]\[
\frac{\sqrt{64}}{\sqrt{4}}
\][/tex]
First, let's evaluate the square roots of the numbers in the numerator and denominator.
1. The square root of 64:
[tex]\[
\sqrt{64} = 8
\][/tex]
2. The square root of 4:
[tex]\[
\sqrt{4} = 2
\][/tex]
Now, substitute these values back into the quotient:
[tex]\[
\frac{\sqrt{64}}{\sqrt{4}} = \frac{8}{2}
\][/tex]
Next, perform the division:
[tex]\[
\frac{8}{2} = 4
\][/tex]
Thus, the quotient is:
[tex]\[
4
\][/tex]
Therefore, the correct choice that is equivalent to the quotient [tex]\(\frac{\sqrt{64}}{\sqrt{4}}\)[/tex] is:
[tex]\[
\boxed{4}
\][/tex]