Certainly! Let's solve the given equation step-by-step to find which equation is equivalent to [tex]\(4x + 3(2x - 4) = 2x\)[/tex].
1. Distribute the 3 inside the parentheses:
[tex]\[
4x + 3 \cdot (2x - 4) = 2x
\][/tex]
This becomes:
[tex]\[
4x + 3 \cdot 2x - 3 \cdot 4 = 2x
\][/tex]
Simplifying inside the parentheses:
[tex]\[
4x + 6x - 12 = 2x
\][/tex]
2. Combine like terms on the left-hand side:
[tex]\[
(4x + 6x) - 12 = 2x
\][/tex]
This simplifies to:
[tex]\[
10x - 12 = 2x
\][/tex]
So, the equivalent equation to [tex]\(4x + 3(2x - 4) = 2x\)[/tex] is:
[tex]\[
10x - 12 = 2x
\][/tex]
Thus, the answer is:
[tex]\[
\boxed{10x - 12 = 2x}
\][/tex]