Which choice is equivalent to the quotient below?

[tex]\[ \frac{\sqrt{15}}{3 \sqrt{3}} \][/tex]

A. [tex]\(\frac{\sqrt{5}}{3}\)[/tex]

B. [tex]\(\frac{\sqrt{5}}{\sqrt{3}}\)[/tex]

C. [tex]\(\frac{\sqrt{5}}{9}\)[/tex]

D. [tex]\(\sqrt{4}\)[/tex]



Answer :

To determine which choice is equivalent to the expression [tex]\(\frac{\sqrt{15}}{3 \sqrt{3}}\)[/tex], let's simplify it step-by-step:

1. Rewrite the numerator:
[tex]\[ \sqrt{15} \implies \sqrt{3 \times 5} = \sqrt{3} \times \sqrt{5} \][/tex]

2. Substitute this back into the original expression:
[tex]\[ \frac{\sqrt{15}}{3 \sqrt{3}} = \frac{\sqrt{3} \times \sqrt{5}}{3 \sqrt{3}} \][/tex]

3. Cancel out the common term [tex]\(\sqrt{3}\)[/tex] from the numerator and the denominator:
[tex]\[ \frac{\sqrt{3} \times \sqrt{5}}{3 \sqrt{3}} = \frac{\sqrt{5}}{3} \][/tex]

Now we compare our simplified expression with the given choices:

A. [tex]\(\frac{\sqrt{5}}{3}\)[/tex]

B. [tex]\(\frac{\sqrt{5}}{\sqrt{3}}\)[/tex]

C. [tex]\(\frac{\sqrt{5}}{9}\)[/tex]

D. [tex]\(\sqrt{4}\)[/tex]

We see that the simplified expression [tex]\(\frac{\sqrt{5}}{3}\)[/tex] matches choice A.

Therefore, the correct choice is:

[tex]\[ \boxed{\frac{\sqrt{5}}{3}} \][/tex]