Question 6 of 10

Which choice is equivalent to the quotient below?

[tex]\[ \frac{\sqrt{45}}{\sqrt{9}} \][/tex]

A. [tex]\(\sqrt{5}\)[/tex]

B. 5

C. [tex]\(\frac{\sqrt{5}}{3}\)[/tex]

D. [tex]\(\frac{5}{3}\)[/tex]



Answer :

To solve the problem of finding the equivalent value to the quotient [tex]\(\frac{\sqrt{45}}{\sqrt{9}}\)[/tex], let us proceed step by step.

1. Simplify the individual square roots:

- First, consider [tex]\(\sqrt{45}\)[/tex].
- To find [tex]\(\sqrt{45}\)[/tex], note that [tex]\(45\)[/tex] can be expressed as [tex]\(45 = 9 \times 5\)[/tex]. Therefore, [tex]\(\sqrt{45} = \sqrt{9 \times 5} = \sqrt{9} \times \sqrt{5} = 3\sqrt{5}\)[/tex].

- Next, consider [tex]\(\sqrt{9}\)[/tex].
- Since [tex]\(9\)[/tex] is a perfect square, [tex]\(\sqrt{9} = 3\)[/tex].

2. Write the quotient with the simplified values:

- Now we substitute the simplified values back into the quotient:
[tex]\[ \frac{\sqrt{45}}{\sqrt{9}} = \frac{3\sqrt{5}}{3} \][/tex]

3. Simplify the fraction:

- We can cancel the [tex]\(3\)[/tex] in the numerator and the denominator:
[tex]\[ \frac{3\sqrt{5}}{3} = \sqrt{5} \][/tex]

Therefore, [tex]\(\frac{\sqrt{45}}{\sqrt{9}} = \sqrt{5}\)[/tex].

The correct choice is:
A. [tex]\(\sqrt{5}\)[/tex]