Answer :

To solve the integral [tex]\(\int \frac{2x}{1+x^4} \, dx\)[/tex], we need to recognize that it can be approached by using a substitution that simplifies the integrand. Here are the detailed steps to solve it:

1. Substitution:
Let [tex]\(u = x^2\)[/tex]. Then, [tex]\(du = 2x \, dx\)[/tex]. Notice how the differential [tex]\(2x \, dx\)[/tex] appears in the numerator of our integrand.

2. Rewriting the Integral:
Substitute [tex]\(u = x^2\)[/tex] and [tex]\(du = 2x \, dx\)[/tex] into the given integral:
[tex]\[ \int \frac{2x}{1+x^4} \, dx = \int \frac{1}{1+u^2} \, du \][/tex]
Here, we have utilized the substitution [tex]\(u = x^2\)[/tex], hence [tex]\(x^4 = (x^2)^2 = u^2\)[/tex].

3. Recognizing the Integral of a Standard Form:
The integral [tex]\(\int \frac{1}{1+u^2} \, du\)[/tex] is a standard integral form. Recall that:
[tex]\[ \int \frac{1}{1+u^2} \, du = \arctan(u) + C \][/tex]
where [tex]\(C\)[/tex] is the constant of integration.

4. Substitute Back the Variable [tex]\(u\)[/tex]:
Since [tex]\(u = x^2\)[/tex], we substitute back to get:
[tex]\[ \arctan(u) = \arctan(x^2) \][/tex]

5. Final Answer:
Therefore, the integral [tex]\(\int \frac{2x}{1+x^4} \, dx\)[/tex] evaluates to:
[tex]\[ \arctan(x^2) + C \][/tex]

So, the final answer is:
[tex]\[ \int \frac{2x}{1+x^4} \, dx = \arctan(x^2) + C \][/tex]