Calculate the momentum of a [tex]$2100\text{-kg}$[/tex] elephant charging a hunter at a speed of [tex]$6.25 \, \text{m/s}$[/tex].

[tex]\[ p_e = 13125 \, \text{kg} \cdot \text{m/s} \][/tex]

What is the momentum of a [tex]$0.0250\text{-kg}$[/tex] tranquilizer dart fired at a speed of [tex]$550 \, \text{m/s}$[/tex]?

[tex]\[ p_d = \square \, \text{kg} \cdot \text{m/s} \][/tex]

What is the momentum of the [tex]$85.0\text{-kg}$[/tex] hunter running at [tex]$5.45 \, \text{m/s}$[/tex] after missing the elephant?

[tex]\[ p_h = \square \, \text{kg} \cdot \text{m/s} \][/tex]



Answer :

To find the momentum of each object, we'll use the formula for momentum:

[tex]\[ p = m \times v \][/tex]

where:
- [tex]\( p \)[/tex] is the momentum,
- [tex]\( m \)[/tex] is the mass, and
- [tex]\( v \)[/tex] is the velocity.

### For the Elephant:
The mass of the elephant is [tex]\( 2100 \, \text{kg} \)[/tex] and the velocity is [tex]\( 6.25 \, \text{m/s} \)[/tex].

[tex]\[ p_e = 2100 \, \text{kg} \times 6.25 \, \text{m/s} \][/tex]
[tex]\[ p_e = 13125 \, \text{kg} \cdot \text{m/s} \][/tex]

Thus, the momentum of the elephant is:
[tex]\[ p_e = 13125 \, \text{kg} \cdot \text{m/s} \][/tex]

### For the Tranquilizer Dart:
The mass of the tranquilizer dart is [tex]\( 0.0250 \, \text{kg} \)[/tex] and the velocity is [tex]\( 550 \, \text{m/s} \)[/tex].

[tex]\[ p_d = 0.0250 \, \text{kg} \times 550 \, \text{m/s} \][/tex]
[tex]\[ p_d = 13.75 \, \text{kg} \cdot \text{m/s} \][/tex]

Thus, the momentum of the tranquilizer dart is:
[tex]\[ p_d = 13.75 \, \text{kg} \cdot \text{m/s} \][/tex]

### For the Hunter:
The mass of the hunter is [tex]\( 85.0 \, \text{kg} \)[/tex] and the velocity is [tex]\( 5.45 \, \text{m/s} \)[/tex].

[tex]\[ p_h = 85.0 \, \text{kg} \times 5.45 \, \text{m/s} \][/tex]
[tex]\[ p_h = 463.25 \, \text{kg} \cdot \text{m/s} \][/tex]

Thus, the momentum of the hunter is:
[tex]\[ p_h = 463.25 \, \text{kg} \cdot \text{m/s} \][/tex]

So, the answers are:

1. The momentum of the elephant:
[tex]\[ p_e = 13125 \, \text{kg} \cdot \text{m/s} \][/tex]

2. The momentum of the tranquilizer dart:
[tex]\[ p_d = 13.75 \, \text{kg} \cdot \text{m/s} \][/tex]

3. The momentum of the hunter:
[tex]\[ p_h = 463.25 \, \text{kg} \cdot \text{m/s} \][/tex]